Metamath Proof Explorer


Theorem f1oexbi

Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018)

Ref Expression
Assertion f1oexbi f f : A 1-1 onto B g g : B 1-1 onto A

Proof

Step Hyp Ref Expression
1 vex f V
2 1 cnvex f -1 V
3 f1ocnv f : A 1-1 onto B f -1 : B 1-1 onto A
4 f1oeq1 g = f -1 g : B 1-1 onto A f -1 : B 1-1 onto A
5 4 spcegv f -1 V f -1 : B 1-1 onto A g g : B 1-1 onto A
6 2 3 5 mpsyl f : A 1-1 onto B g g : B 1-1 onto A
7 6 exlimiv f f : A 1-1 onto B g g : B 1-1 onto A
8 vex g V
9 8 cnvex g -1 V
10 f1ocnv g : B 1-1 onto A g -1 : A 1-1 onto B
11 f1oeq1 f = g -1 f : A 1-1 onto B g -1 : A 1-1 onto B
12 11 spcegv g -1 V g -1 : A 1-1 onto B f f : A 1-1 onto B
13 9 10 12 mpsyl g : B 1-1 onto A f f : A 1-1 onto B
14 13 exlimiv g g : B 1-1 onto A f f : A 1-1 onto B
15 7 14 impbii f f : A 1-1 onto B g g : B 1-1 onto A