Metamath Proof Explorer


Theorem f1oexrnex

Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019)

Ref Expression
Assertion f1oexrnex F : A 1-1 onto B B V F V

Proof

Step Hyp Ref Expression
1 simpl F : A 1-1 onto B B V F : A 1-1 onto B
2 f1ocnv F : A 1-1 onto B F -1 : B 1-1 onto A
3 f1of F -1 : B 1-1 onto A F -1 : B A
4 1 2 3 3syl F : A 1-1 onto B B V F -1 : B A
5 fex F -1 : B A B V F -1 V
6 4 5 sylancom F : A 1-1 onto B B V F -1 V
7 f1orel F : A 1-1 onto B Rel F
8 7 adantr F : A 1-1 onto B B V Rel F
9 relcnvexb Rel F F V F -1 V
10 8 9 syl F : A 1-1 onto B B V F V F -1 V
11 6 10 mpbird F : A 1-1 onto B B V F V