Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1ofo
Next ⟩
dff1o4
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1ofo
Description:
A one-to-one onto function is an onto function.
(Contributed by
NM
, 28-Apr-2004)
Ref
Expression
Assertion
f1ofo
⊢
F
:
A
⟶
1-1 onto
B
→
F
:
A
⟶
onto
B
Proof
Step
Hyp
Ref
Expression
1
dff1o3
⊢
F
:
A
⟶
1-1 onto
B
↔
F
:
A
⟶
onto
B
∧
Fun
⁡
F
-1
2
1
simplbi
⊢
F
:
A
⟶
1-1 onto
B
→
F
:
A
⟶
onto
B