Metamath Proof Explorer


Theorem f1ofveu

Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006)

Ref Expression
Assertion f1ofveu F : A 1-1 onto B C B ∃! x A F x = C

Proof

Step Hyp Ref Expression
1 f1ocnv F : A 1-1 onto B F -1 : B 1-1 onto A
2 f1of F -1 : B 1-1 onto A F -1 : B A
3 1 2 syl F : A 1-1 onto B F -1 : B A
4 feu F -1 : B A C B ∃! x A C x F -1
5 3 4 sylan F : A 1-1 onto B C B ∃! x A C x F -1
6 f1ocnvfvb F : A 1-1 onto B x A C B F x = C F -1 C = x
7 6 3com23 F : A 1-1 onto B C B x A F x = C F -1 C = x
8 dff1o4 F : A 1-1 onto B F Fn A F -1 Fn B
9 8 simprbi F : A 1-1 onto B F -1 Fn B
10 fnopfvb F -1 Fn B C B F -1 C = x C x F -1
11 10 3adant3 F -1 Fn B C B x A F -1 C = x C x F -1
12 9 11 syl3an1 F : A 1-1 onto B C B x A F -1 C = x C x F -1
13 7 12 bitrd F : A 1-1 onto B C B x A F x = C C x F -1
14 13 3expa F : A 1-1 onto B C B x A F x = C C x F -1
15 14 reubidva F : A 1-1 onto B C B ∃! x A F x = C ∃! x A C x F -1
16 5 15 mpbird F : A 1-1 onto B C B ∃! x A F x = C