Step |
Hyp |
Ref |
Expression |
1 |
|
f1oiso2.1 |
|
2 |
|
f1ocnvdm |
|
3 |
2
|
adantrr |
|
4 |
3
|
3adant3 |
|
5 |
|
f1ocnvdm |
|
6 |
5
|
adantrl |
|
7 |
6
|
3adant3 |
|
8 |
|
f1ocnvfv2 |
|
9 |
8
|
eqcomd |
|
10 |
|
f1ocnvfv2 |
|
11 |
10
|
eqcomd |
|
12 |
9 11
|
anim12dan |
|
13 |
12
|
3adant3 |
|
14 |
|
simp3 |
|
15 |
|
fveq2 |
|
16 |
15
|
eqeq2d |
|
17 |
16
|
anbi2d |
|
18 |
|
breq2 |
|
19 |
17 18
|
anbi12d |
|
20 |
19
|
rspcev |
|
21 |
7 13 14 20
|
syl12anc |
|
22 |
|
fveq2 |
|
23 |
22
|
eqeq2d |
|
24 |
23
|
anbi1d |
|
25 |
|
breq1 |
|
26 |
24 25
|
anbi12d |
|
27 |
26
|
rexbidv |
|
28 |
27
|
rspcev |
|
29 |
4 21 28
|
syl2anc |
|
30 |
29
|
3expib |
|
31 |
|
simp3ll |
|
32 |
|
simp1 |
|
33 |
|
simp2l |
|
34 |
|
f1of |
|
35 |
34
|
ffvelrnda |
|
36 |
32 33 35
|
syl2anc |
|
37 |
31 36
|
eqeltrd |
|
38 |
|
simp3lr |
|
39 |
|
simp2r |
|
40 |
34
|
ffvelrnda |
|
41 |
32 39 40
|
syl2anc |
|
42 |
38 41
|
eqeltrd |
|
43 |
|
simp3r |
|
44 |
31
|
eqcomd |
|
45 |
|
f1ocnvfv |
|
46 |
32 33 45
|
syl2anc |
|
47 |
44 46
|
mpd |
|
48 |
38
|
eqcomd |
|
49 |
|
f1ocnvfv |
|
50 |
32 39 49
|
syl2anc |
|
51 |
48 50
|
mpd |
|
52 |
43 47 51
|
3brtr4d |
|
53 |
37 42 52
|
jca31 |
|
54 |
53
|
3exp |
|
55 |
54
|
rexlimdvv |
|
56 |
30 55
|
impbid |
|
57 |
56
|
opabbidv |
|
58 |
1 57
|
eqtrid |
|
59 |
|
f1oiso |
|
60 |
58 59
|
mpdan |
|