Metamath Proof Explorer


Theorem f1oiso2

Description: Any one-to-one onto function determines an isomorphism with an induced relation S . (Contributed by Mario Carneiro, 9-Mar-2013)

Ref Expression
Hypothesis f1oiso2.1 S = x y | x B y B H -1 x R H -1 y
Assertion f1oiso2 H : A 1-1 onto B H Isom R , S A B

Proof

Step Hyp Ref Expression
1 f1oiso2.1 S = x y | x B y B H -1 x R H -1 y
2 f1ocnvdm H : A 1-1 onto B x B H -1 x A
3 2 adantrr H : A 1-1 onto B x B y B H -1 x A
4 3 3adant3 H : A 1-1 onto B x B y B H -1 x R H -1 y H -1 x A
5 f1ocnvdm H : A 1-1 onto B y B H -1 y A
6 5 adantrl H : A 1-1 onto B x B y B H -1 y A
7 6 3adant3 H : A 1-1 onto B x B y B H -1 x R H -1 y H -1 y A
8 f1ocnvfv2 H : A 1-1 onto B x B H H -1 x = x
9 8 eqcomd H : A 1-1 onto B x B x = H H -1 x
10 f1ocnvfv2 H : A 1-1 onto B y B H H -1 y = y
11 10 eqcomd H : A 1-1 onto B y B y = H H -1 y
12 9 11 anim12dan H : A 1-1 onto B x B y B x = H H -1 x y = H H -1 y
13 12 3adant3 H : A 1-1 onto B x B y B H -1 x R H -1 y x = H H -1 x y = H H -1 y
14 simp3 H : A 1-1 onto B x B y B H -1 x R H -1 y H -1 x R H -1 y
15 fveq2 w = H -1 y H w = H H -1 y
16 15 eqeq2d w = H -1 y y = H w y = H H -1 y
17 16 anbi2d w = H -1 y x = H H -1 x y = H w x = H H -1 x y = H H -1 y
18 breq2 w = H -1 y H -1 x R w H -1 x R H -1 y
19 17 18 anbi12d w = H -1 y x = H H -1 x y = H w H -1 x R w x = H H -1 x y = H H -1 y H -1 x R H -1 y
20 19 rspcev H -1 y A x = H H -1 x y = H H -1 y H -1 x R H -1 y w A x = H H -1 x y = H w H -1 x R w
21 7 13 14 20 syl12anc H : A 1-1 onto B x B y B H -1 x R H -1 y w A x = H H -1 x y = H w H -1 x R w
22 fveq2 z = H -1 x H z = H H -1 x
23 22 eqeq2d z = H -1 x x = H z x = H H -1 x
24 23 anbi1d z = H -1 x x = H z y = H w x = H H -1 x y = H w
25 breq1 z = H -1 x z R w H -1 x R w
26 24 25 anbi12d z = H -1 x x = H z y = H w z R w x = H H -1 x y = H w H -1 x R w
27 26 rexbidv z = H -1 x w A x = H z y = H w z R w w A x = H H -1 x y = H w H -1 x R w
28 27 rspcev H -1 x A w A x = H H -1 x y = H w H -1 x R w z A w A x = H z y = H w z R w
29 4 21 28 syl2anc H : A 1-1 onto B x B y B H -1 x R H -1 y z A w A x = H z y = H w z R w
30 29 3expib H : A 1-1 onto B x B y B H -1 x R H -1 y z A w A x = H z y = H w z R w
31 simp3ll H : A 1-1 onto B z A w A x = H z y = H w z R w x = H z
32 simp1 H : A 1-1 onto B z A w A x = H z y = H w z R w H : A 1-1 onto B
33 simp2l H : A 1-1 onto B z A w A x = H z y = H w z R w z A
34 f1of H : A 1-1 onto B H : A B
35 34 ffvelrnda H : A 1-1 onto B z A H z B
36 32 33 35 syl2anc H : A 1-1 onto B z A w A x = H z y = H w z R w H z B
37 31 36 eqeltrd H : A 1-1 onto B z A w A x = H z y = H w z R w x B
38 simp3lr H : A 1-1 onto B z A w A x = H z y = H w z R w y = H w
39 simp2r H : A 1-1 onto B z A w A x = H z y = H w z R w w A
40 34 ffvelrnda H : A 1-1 onto B w A H w B
41 32 39 40 syl2anc H : A 1-1 onto B z A w A x = H z y = H w z R w H w B
42 38 41 eqeltrd H : A 1-1 onto B z A w A x = H z y = H w z R w y B
43 simp3r H : A 1-1 onto B z A w A x = H z y = H w z R w z R w
44 31 eqcomd H : A 1-1 onto B z A w A x = H z y = H w z R w H z = x
45 f1ocnvfv H : A 1-1 onto B z A H z = x H -1 x = z
46 32 33 45 syl2anc H : A 1-1 onto B z A w A x = H z y = H w z R w H z = x H -1 x = z
47 44 46 mpd H : A 1-1 onto B z A w A x = H z y = H w z R w H -1 x = z
48 38 eqcomd H : A 1-1 onto B z A w A x = H z y = H w z R w H w = y
49 f1ocnvfv H : A 1-1 onto B w A H w = y H -1 y = w
50 32 39 49 syl2anc H : A 1-1 onto B z A w A x = H z y = H w z R w H w = y H -1 y = w
51 48 50 mpd H : A 1-1 onto B z A w A x = H z y = H w z R w H -1 y = w
52 43 47 51 3brtr4d H : A 1-1 onto B z A w A x = H z y = H w z R w H -1 x R H -1 y
53 37 42 52 jca31 H : A 1-1 onto B z A w A x = H z y = H w z R w x B y B H -1 x R H -1 y
54 53 3exp H : A 1-1 onto B z A w A x = H z y = H w z R w x B y B H -1 x R H -1 y
55 54 rexlimdvv H : A 1-1 onto B z A w A x = H z y = H w z R w x B y B H -1 x R H -1 y
56 30 55 impbid H : A 1-1 onto B x B y B H -1 x R H -1 y z A w A x = H z y = H w z R w
57 56 opabbidv H : A 1-1 onto B x y | x B y B H -1 x R H -1 y = x y | z A w A x = H z y = H w z R w
58 1 57 eqtrid H : A 1-1 onto B S = x y | z A w A x = H z y = H w z R w
59 f1oiso H : A 1-1 onto B S = x y | z A w A x = H z y = H w z R w H Isom R , S A B
60 58 59 mpdan H : A 1-1 onto B H Isom R , S A B