| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1oiso2.1 |
|
| 2 |
|
f1ocnvdm |
|
| 3 |
2
|
adantrr |
|
| 4 |
3
|
3adant3 |
|
| 5 |
|
f1ocnvdm |
|
| 6 |
5
|
adantrl |
|
| 7 |
6
|
3adant3 |
|
| 8 |
|
f1ocnvfv2 |
|
| 9 |
8
|
eqcomd |
|
| 10 |
|
f1ocnvfv2 |
|
| 11 |
10
|
eqcomd |
|
| 12 |
9 11
|
anim12dan |
|
| 13 |
12
|
3adant3 |
|
| 14 |
|
simp3 |
|
| 15 |
|
fveq2 |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
16
|
anbi2d |
|
| 18 |
|
breq2 |
|
| 19 |
17 18
|
anbi12d |
|
| 20 |
19
|
rspcev |
|
| 21 |
7 13 14 20
|
syl12anc |
|
| 22 |
|
fveq2 |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
23
|
anbi1d |
|
| 25 |
|
breq1 |
|
| 26 |
24 25
|
anbi12d |
|
| 27 |
26
|
rexbidv |
|
| 28 |
27
|
rspcev |
|
| 29 |
4 21 28
|
syl2anc |
|
| 30 |
29
|
3expib |
|
| 31 |
|
simp3ll |
|
| 32 |
|
simp1 |
|
| 33 |
|
simp2l |
|
| 34 |
|
f1of |
|
| 35 |
34
|
ffvelcdmda |
|
| 36 |
32 33 35
|
syl2anc |
|
| 37 |
31 36
|
eqeltrd |
|
| 38 |
|
simp3lr |
|
| 39 |
|
simp2r |
|
| 40 |
34
|
ffvelcdmda |
|
| 41 |
32 39 40
|
syl2anc |
|
| 42 |
38 41
|
eqeltrd |
|
| 43 |
|
simp3r |
|
| 44 |
31
|
eqcomd |
|
| 45 |
|
f1ocnvfv |
|
| 46 |
32 33 45
|
syl2anc |
|
| 47 |
44 46
|
mpd |
|
| 48 |
38
|
eqcomd |
|
| 49 |
|
f1ocnvfv |
|
| 50 |
32 39 49
|
syl2anc |
|
| 51 |
48 50
|
mpd |
|
| 52 |
43 47 51
|
3brtr4d |
|
| 53 |
37 42 52
|
jca31 |
|
| 54 |
53
|
3exp |
|
| 55 |
54
|
rexlimdvv |
|
| 56 |
30 55
|
impbid |
|
| 57 |
56
|
opabbidv |
|
| 58 |
1 57
|
eqtrid |
|
| 59 |
|
f1oiso |
|
| 60 |
58 59
|
mpdan |
|