Metamath Proof Explorer


Theorem f1olecpbl

Description: An injection is compatible with any relations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypothesis f1ocpbl.f φ F : V 1-1 onto X
Assertion f1olecpbl φ A V B V C V D V F A = F C F B = F D A N B C N D

Proof

Step Hyp Ref Expression
1 f1ocpbl.f φ F : V 1-1 onto X
2 1 f1ocpbllem φ A V B V C V D V F A = F C F B = F D A = C B = D
3 breq12 A = C B = D A N B C N D
4 2 3 syl6bi φ A V B V C V D V F A = F C F B = F D A N B C N D