Metamath Proof Explorer


Theorem f1omo

Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi assuming ax-un (see f1omoALT ). (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypothesis f1omo.1 φ F = A × 1 𝑜
Assertion f1omo φ * y y F X

Proof

Step Hyp Ref Expression
1 f1omo.1 φ F = A × 1 𝑜
2 1oex 1 𝑜 V
3 eqid A × 1 𝑜 X = A × 1 𝑜 X
4 2 3 fvconst0ci A × 1 𝑜 X = A × 1 𝑜 X = 1 𝑜
5 mo0 A × 1 𝑜 X = * y y A × 1 𝑜 X
6 el1o y 1 𝑜 y =
7 el1o x 1 𝑜 x =
8 eqtr3 y = x = y = x
9 6 7 8 syl2anb y 1 𝑜 x 1 𝑜 y = x
10 9 gen2 y x y 1 𝑜 x 1 𝑜 y = x
11 eleq1w y = x y 1 𝑜 x 1 𝑜
12 11 mo4 * y y 1 𝑜 y x y 1 𝑜 x 1 𝑜 y = x
13 10 12 mpbir * y y 1 𝑜
14 eleq2w2 A × 1 𝑜 X = 1 𝑜 y A × 1 𝑜 X y 1 𝑜
15 14 mobidv A × 1 𝑜 X = 1 𝑜 * y y A × 1 𝑜 X * y y 1 𝑜
16 13 15 mpbiri A × 1 𝑜 X = 1 𝑜 * y y A × 1 𝑜 X
17 5 16 jaoi A × 1 𝑜 X = A × 1 𝑜 X = 1 𝑜 * y y A × 1 𝑜 X
18 4 17 ax-mp * y y A × 1 𝑜 X
19 1 fveq1d φ F X = A × 1 𝑜 X
20 19 eleq2d φ y F X y A × 1 𝑜 X
21 20 mobidv φ * y y F X * y y A × 1 𝑜 X
22 18 21 mpbiri φ * y y F X