Metamath Proof Explorer


Theorem f1omoALT

Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Use f1omo without assuming ax-un . (Contributed by Zhi Wang, 18-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis f1omoALT.1 φF=A×1𝑜
Assertion f1omoALT φ*yyFX

Proof

Step Hyp Ref Expression
1 f1omoALT.1 φF=A×1𝑜
2 1 fveq1d φFX=A×1𝑜X
3 1oex 1𝑜V
4 3 fvconstdomi A×1𝑜X1𝑜
5 2 4 eqbrtrdi φFX1𝑜
6 modom2 *yyFXFX1𝑜
7 5 6 sylibr φ*yyFX