Metamath Proof Explorer


Theorem f1omvdcnv

Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion f1omvdcnv F : A 1-1 onto A dom F -1 I = dom F I

Proof

Step Hyp Ref Expression
1 f1ocnvfvb F : A 1-1 onto A x A x A F x = x F -1 x = x
2 1 3anidm23 F : A 1-1 onto A x A F x = x F -1 x = x
3 2 bicomd F : A 1-1 onto A x A F -1 x = x F x = x
4 3 necon3bid F : A 1-1 onto A x A F -1 x x F x x
5 4 rabbidva F : A 1-1 onto A x A | F -1 x x = x A | F x x
6 f1ocnv F : A 1-1 onto A F -1 : A 1-1 onto A
7 f1ofn F -1 : A 1-1 onto A F -1 Fn A
8 fndifnfp F -1 Fn A dom F -1 I = x A | F -1 x x
9 6 7 8 3syl F : A 1-1 onto A dom F -1 I = x A | F -1 x x
10 f1ofn F : A 1-1 onto A F Fn A
11 fndifnfp F Fn A dom F I = x A | F x x
12 10 11 syl F : A 1-1 onto A dom F I = x A | F x x
13 5 9 12 3eqtr4d F : A 1-1 onto A dom F -1 I = dom F I