Step |
Hyp |
Ref |
Expression |
1 |
|
excxor |
|
2 |
|
coass |
|
3 |
|
f1ococnv1 |
|
4 |
3
|
coeq1d |
|
5 |
|
f1of |
|
6 |
|
fcoi2 |
|
7 |
5 6
|
syl |
|
8 |
4 7
|
sylan9eq |
|
9 |
2 8
|
eqtr3id |
|
10 |
9
|
difeq1d |
|
11 |
10
|
dmeqd |
|
12 |
11
|
adantr |
|
13 |
|
mvdco |
|
14 |
|
f1omvdcnv |
|
15 |
14
|
ad2antrr |
|
16 |
|
simprl |
|
17 |
15 16
|
eqsstrd |
|
18 |
|
simprr |
|
19 |
17 18
|
unssd |
|
20 |
13 19
|
sstrid |
|
21 |
12 20
|
eqsstrrd |
|
22 |
21
|
expr |
|
23 |
22
|
con3d |
|
24 |
23
|
expimpd |
|
25 |
|
coass |
|
26 |
|
f1ococnv2 |
|
27 |
26
|
coeq2d |
|
28 |
|
f1of |
|
29 |
|
fcoi1 |
|
30 |
28 29
|
syl |
|
31 |
27 30
|
sylan9eqr |
|
32 |
25 31
|
eqtrid |
|
33 |
32
|
difeq1d |
|
34 |
33
|
dmeqd |
|
35 |
34
|
adantr |
|
36 |
|
mvdco |
|
37 |
|
simprr |
|
38 |
|
f1omvdcnv |
|
39 |
38
|
ad2antlr |
|
40 |
|
simprl |
|
41 |
39 40
|
eqsstrd |
|
42 |
37 41
|
unssd |
|
43 |
36 42
|
sstrid |
|
44 |
35 43
|
eqsstrrd |
|
45 |
44
|
expr |
|
46 |
45
|
con3d |
|
47 |
46
|
expimpd |
|
48 |
47
|
ancomsd |
|
49 |
24 48
|
jaod |
|
50 |
1 49
|
syl5bi |
|
51 |
50
|
3impia |
|