Metamath Proof Explorer


Theorem f1omvdco2

Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion f1omvdco2 F : A 1-1 onto A G : A 1-1 onto A dom F I X dom G I X ¬ dom F G I X

Proof

Step Hyp Ref Expression
1 excxor dom F I X dom G I X dom F I X ¬ dom G I X ¬ dom F I X dom G I X
2 coass F -1 F G = F -1 F G
3 f1ococnv1 F : A 1-1 onto A F -1 F = I A
4 3 coeq1d F : A 1-1 onto A F -1 F G = I A G
5 f1of G : A 1-1 onto A G : A A
6 fcoi2 G : A A I A G = G
7 5 6 syl G : A 1-1 onto A I A G = G
8 4 7 sylan9eq F : A 1-1 onto A G : A 1-1 onto A F -1 F G = G
9 2 8 eqtr3id F : A 1-1 onto A G : A 1-1 onto A F -1 F G = G
10 9 difeq1d F : A 1-1 onto A G : A 1-1 onto A F -1 F G I = G I
11 10 dmeqd F : A 1-1 onto A G : A 1-1 onto A dom F -1 F G I = dom G I
12 11 adantr F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom F -1 F G I = dom G I
13 mvdco dom F -1 F G I dom F -1 I dom F G I
14 f1omvdcnv F : A 1-1 onto A dom F -1 I = dom F I
15 14 ad2antrr F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom F -1 I = dom F I
16 simprl F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom F I X
17 15 16 eqsstrd F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom F -1 I X
18 simprr F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom F G I X
19 17 18 unssd F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom F -1 I dom F G I X
20 13 19 sstrid F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom F -1 F G I X
21 12 20 eqsstrrd F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom G I X
22 21 expr F : A 1-1 onto A G : A 1-1 onto A dom F I X dom F G I X dom G I X
23 22 con3d F : A 1-1 onto A G : A 1-1 onto A dom F I X ¬ dom G I X ¬ dom F G I X
24 23 expimpd F : A 1-1 onto A G : A 1-1 onto A dom F I X ¬ dom G I X ¬ dom F G I X
25 coass F G G -1 = F G G -1
26 f1ococnv2 G : A 1-1 onto A G G -1 = I A
27 26 coeq2d G : A 1-1 onto A F G G -1 = F I A
28 f1of F : A 1-1 onto A F : A A
29 fcoi1 F : A A F I A = F
30 28 29 syl F : A 1-1 onto A F I A = F
31 27 30 sylan9eqr F : A 1-1 onto A G : A 1-1 onto A F G G -1 = F
32 25 31 eqtrid F : A 1-1 onto A G : A 1-1 onto A F G G -1 = F
33 32 difeq1d F : A 1-1 onto A G : A 1-1 onto A F G G -1 I = F I
34 33 dmeqd F : A 1-1 onto A G : A 1-1 onto A dom F G G -1 I = dom F I
35 34 adantr F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom F G G -1 I = dom F I
36 mvdco dom F G G -1 I dom F G I dom G -1 I
37 simprr F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom F G I X
38 f1omvdcnv G : A 1-1 onto A dom G -1 I = dom G I
39 38 ad2antlr F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom G -1 I = dom G I
40 simprl F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom G I X
41 39 40 eqsstrd F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom G -1 I X
42 37 41 unssd F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom F G I dom G -1 I X
43 36 42 sstrid F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom F G G -1 I X
44 35 43 eqsstrrd F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom F I X
45 44 expr F : A 1-1 onto A G : A 1-1 onto A dom G I X dom F G I X dom F I X
46 45 con3d F : A 1-1 onto A G : A 1-1 onto A dom G I X ¬ dom F I X ¬ dom F G I X
47 46 expimpd F : A 1-1 onto A G : A 1-1 onto A dom G I X ¬ dom F I X ¬ dom F G I X
48 47 ancomsd F : A 1-1 onto A G : A 1-1 onto A ¬ dom F I X dom G I X ¬ dom F G I X
49 24 48 jaod F : A 1-1 onto A G : A 1-1 onto A dom F I X ¬ dom G I X ¬ dom F I X dom G I X ¬ dom F G I X
50 1 49 syl5bi F : A 1-1 onto A G : A 1-1 onto A dom F I X dom G I X ¬ dom F G I X
51 50 3impia F : A 1-1 onto A G : A 1-1 onto A dom F I X dom G I X ¬ dom F G I X