Metamath Proof Explorer


Theorem f1omvdco3

Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion f1omvdco3 F : A 1-1 onto A G : A 1-1 onto A X dom F I X dom G I X dom F G I

Proof

Step Hyp Ref Expression
1 notbi X dom F I X dom G I ¬ X dom F I ¬ X dom G I
2 disjsn dom F I X = ¬ X dom F I
3 disj2 dom F I X = dom F I V X
4 2 3 bitr3i ¬ X dom F I dom F I V X
5 disjsn dom G I X = ¬ X dom G I
6 disj2 dom G I X = dom G I V X
7 5 6 bitr3i ¬ X dom G I dom G I V X
8 4 7 bibi12i ¬ X dom F I ¬ X dom G I dom F I V X dom G I V X
9 1 8 bitri X dom F I X dom G I dom F I V X dom G I V X
10 9 notbii ¬ X dom F I X dom G I ¬ dom F I V X dom G I V X
11 df-xor X dom F I X dom G I ¬ X dom F I X dom G I
12 df-xor dom F I V X dom G I V X ¬ dom F I V X dom G I V X
13 10 11 12 3bitr4i X dom F I X dom G I dom F I V X dom G I V X
14 f1omvdco2 F : A 1-1 onto A G : A 1-1 onto A dom F I V X dom G I V X ¬ dom F G I V X
15 disj2 dom F G I X = dom F G I V X
16 disjsn dom F G I X = ¬ X dom F G I
17 15 16 bitr3i dom F G I V X ¬ X dom F G I
18 17 con2bii X dom F G I ¬ dom F G I V X
19 14 18 sylibr F : A 1-1 onto A G : A 1-1 onto A dom F I V X dom G I V X X dom F G I
20 13 19 syl3an3b F : A 1-1 onto A G : A 1-1 onto A X dom F I X dom G I X dom F G I