Metamath Proof Explorer


Theorem f1omvdconj

Description: Conjugation of a permutation takes the image of the moved subclass. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion f1omvdconj F : A A G : A 1-1 onto A dom G F G -1 I = G dom F I

Proof

Step Hyp Ref Expression
1 difss G F G -1 I G F G -1
2 dmss G F G -1 I G F G -1 dom G F G -1 I dom G F G -1
3 1 2 ax-mp dom G F G -1 I dom G F G -1
4 dmcoss dom G F G -1 dom G -1
5 3 4 sstri dom G F G -1 I dom G -1
6 f1ocnv G : A 1-1 onto A G -1 : A 1-1 onto A
7 6 adantl F : A A G : A 1-1 onto A G -1 : A 1-1 onto A
8 f1odm G -1 : A 1-1 onto A dom G -1 = A
9 7 8 syl F : A A G : A 1-1 onto A dom G -1 = A
10 5 9 sseqtrid F : A A G : A 1-1 onto A dom G F G -1 I A
11 10 sselda F : A A G : A 1-1 onto A x dom G F G -1 I x A
12 imassrn G dom F I ran G
13 f1of G : A 1-1 onto A G : A A
14 13 adantl F : A A G : A 1-1 onto A G : A A
15 14 frnd F : A A G : A 1-1 onto A ran G A
16 12 15 sstrid F : A A G : A 1-1 onto A G dom F I A
17 16 sselda F : A A G : A 1-1 onto A x G dom F I x A
18 simpl F : A A G : A 1-1 onto A F : A A
19 fco G : A A F : A A G F : A A
20 14 18 19 syl2anc F : A A G : A 1-1 onto A G F : A A
21 f1of G -1 : A 1-1 onto A G -1 : A A
22 7 21 syl F : A A G : A 1-1 onto A G -1 : A A
23 fco G F : A A G -1 : A A G F G -1 : A A
24 20 22 23 syl2anc F : A A G : A 1-1 onto A G F G -1 : A A
25 24 ffnd F : A A G : A 1-1 onto A G F G -1 Fn A
26 fnelnfp G F G -1 Fn A x A x dom G F G -1 I G F G -1 x x
27 25 26 sylan F : A A G : A 1-1 onto A x A x dom G F G -1 I G F G -1 x x
28 f1ofn G -1 : A 1-1 onto A G -1 Fn A
29 7 28 syl F : A A G : A 1-1 onto A G -1 Fn A
30 fvco2 G -1 Fn A x A G F G -1 x = G F G -1 x
31 29 30 sylan F : A A G : A 1-1 onto A x A G F G -1 x = G F G -1 x
32 ffn F : A A F Fn A
33 32 ad2antrr F : A A G : A 1-1 onto A x A F Fn A
34 ffvelrn G -1 : A A x A G -1 x A
35 22 34 sylan F : A A G : A 1-1 onto A x A G -1 x A
36 fvco2 F Fn A G -1 x A G F G -1 x = G F G -1 x
37 33 35 36 syl2anc F : A A G : A 1-1 onto A x A G F G -1 x = G F G -1 x
38 31 37 eqtrd F : A A G : A 1-1 onto A x A G F G -1 x = G F G -1 x
39 38 eqeq1d F : A A G : A 1-1 onto A x A G F G -1 x = x G F G -1 x = x
40 simplr F : A A G : A 1-1 onto A x A G : A 1-1 onto A
41 simpll F : A A G : A 1-1 onto A x A F : A A
42 ffvelrn F : A A G -1 x A F G -1 x A
43 41 35 42 syl2anc F : A A G : A 1-1 onto A x A F G -1 x A
44 simpr F : A A G : A 1-1 onto A x A x A
45 f1ocnvfvb G : A 1-1 onto A F G -1 x A x A G F G -1 x = x G -1 x = F G -1 x
46 40 43 44 45 syl3anc F : A A G : A 1-1 onto A x A G F G -1 x = x G -1 x = F G -1 x
47 39 46 bitrd F : A A G : A 1-1 onto A x A G F G -1 x = x G -1 x = F G -1 x
48 47 necon3bid F : A A G : A 1-1 onto A x A G F G -1 x x G -1 x F G -1 x
49 necom G -1 x F G -1 x F G -1 x G -1 x
50 f1of1 G : A 1-1 onto A G : A 1-1 A
51 50 ad2antlr F : A A G : A 1-1 onto A x A G : A 1-1 A
52 difss F I F
53 dmss F I F dom F I dom F
54 52 53 ax-mp dom F I dom F
55 fdm F : A A dom F = A
56 54 55 sseqtrid F : A A dom F I A
57 56 ad2antrr F : A A G : A 1-1 onto A x A dom F I A
58 f1elima G : A 1-1 A G -1 x A dom F I A G G -1 x G dom F I G -1 x dom F I
59 51 35 57 58 syl3anc F : A A G : A 1-1 onto A x A G G -1 x G dom F I G -1 x dom F I
60 f1ocnvfv2 G : A 1-1 onto A x A G G -1 x = x
61 60 adantll F : A A G : A 1-1 onto A x A G G -1 x = x
62 61 eleq1d F : A A G : A 1-1 onto A x A G G -1 x G dom F I x G dom F I
63 fnelnfp F Fn A G -1 x A G -1 x dom F I F G -1 x G -1 x
64 33 35 63 syl2anc F : A A G : A 1-1 onto A x A G -1 x dom F I F G -1 x G -1 x
65 59 62 64 3bitr3rd F : A A G : A 1-1 onto A x A F G -1 x G -1 x x G dom F I
66 49 65 syl5bb F : A A G : A 1-1 onto A x A G -1 x F G -1 x x G dom F I
67 27 48 66 3bitrd F : A A G : A 1-1 onto A x A x dom G F G -1 I x G dom F I
68 11 17 67 eqrdav F : A A G : A 1-1 onto A dom G F G -1 I = G dom F I