Step |
Hyp |
Ref |
Expression |
1 |
|
difss |
|
2 |
|
dmss |
|
3 |
1 2
|
ax-mp |
|
4 |
|
dmcoss |
|
5 |
3 4
|
sstri |
|
6 |
|
f1ocnv |
|
7 |
6
|
adantl |
|
8 |
|
f1odm |
|
9 |
7 8
|
syl |
|
10 |
5 9
|
sseqtrid |
|
11 |
10
|
sselda |
|
12 |
|
imassrn |
|
13 |
|
f1of |
|
14 |
13
|
adantl |
|
15 |
14
|
frnd |
|
16 |
12 15
|
sstrid |
|
17 |
16
|
sselda |
|
18 |
|
simpl |
|
19 |
|
fco |
|
20 |
14 18 19
|
syl2anc |
|
21 |
|
f1of |
|
22 |
7 21
|
syl |
|
23 |
|
fco |
|
24 |
20 22 23
|
syl2anc |
|
25 |
24
|
ffnd |
|
26 |
|
fnelnfp |
|
27 |
25 26
|
sylan |
|
28 |
|
f1ofn |
|
29 |
7 28
|
syl |
|
30 |
|
fvco2 |
|
31 |
29 30
|
sylan |
|
32 |
|
ffn |
|
33 |
32
|
ad2antrr |
|
34 |
|
ffvelrn |
|
35 |
22 34
|
sylan |
|
36 |
|
fvco2 |
|
37 |
33 35 36
|
syl2anc |
|
38 |
31 37
|
eqtrd |
|
39 |
38
|
eqeq1d |
|
40 |
|
simplr |
|
41 |
|
simpll |
|
42 |
|
ffvelrn |
|
43 |
41 35 42
|
syl2anc |
|
44 |
|
simpr |
|
45 |
|
f1ocnvfvb |
|
46 |
40 43 44 45
|
syl3anc |
|
47 |
39 46
|
bitrd |
|
48 |
47
|
necon3bid |
|
49 |
|
necom |
|
50 |
|
f1of1 |
|
51 |
50
|
ad2antlr |
|
52 |
|
difss |
|
53 |
|
dmss |
|
54 |
52 53
|
ax-mp |
|
55 |
|
fdm |
|
56 |
54 55
|
sseqtrid |
|
57 |
56
|
ad2antrr |
|
58 |
|
f1elima |
|
59 |
51 35 57 58
|
syl3anc |
|
60 |
|
f1ocnvfv2 |
|
61 |
60
|
adantll |
|
62 |
61
|
eleq1d |
|
63 |
|
fnelnfp |
|
64 |
33 35 63
|
syl2anc |
|
65 |
59 62 64
|
3bitr3rd |
|
66 |
49 65
|
syl5bb |
|
67 |
27 48 66
|
3bitrd |
|
68 |
11 17 67
|
eqrdav |
|