Metamath Proof Explorer


Theorem f1opr

Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion f1opr F : A × B 1-1 C F : A × B C r A s B t A u B r F s = t F u r = t s = u

Proof

Step Hyp Ref Expression
1 dff13 F : A × B 1-1 C F : A × B C v A × B w A × B F v = F w v = w
2 fveq2 v = r s F v = F r s
3 df-ov r F s = F r s
4 2 3 eqtr4di v = r s F v = r F s
5 4 eqeq1d v = r s F v = F w r F s = F w
6 eqeq1 v = r s v = w r s = w
7 5 6 imbi12d v = r s F v = F w v = w r F s = F w r s = w
8 7 ralbidv v = r s w A × B F v = F w v = w w A × B r F s = F w r s = w
9 8 ralxp v A × B w A × B F v = F w v = w r A s B w A × B r F s = F w r s = w
10 fveq2 w = t u F w = F t u
11 df-ov t F u = F t u
12 10 11 eqtr4di w = t u F w = t F u
13 12 eqeq2d w = t u r F s = F w r F s = t F u
14 eqeq2 w = t u r s = w r s = t u
15 vex r V
16 vex s V
17 15 16 opth r s = t u r = t s = u
18 14 17 bitrdi w = t u r s = w r = t s = u
19 13 18 imbi12d w = t u r F s = F w r s = w r F s = t F u r = t s = u
20 19 ralxp w A × B r F s = F w r s = w t A u B r F s = t F u r = t s = u
21 20 2ralbii r A s B w A × B r F s = F w r s = w r A s B t A u B r F s = t F u r = t s = u
22 9 21 bitri v A × B w A × B F v = F w v = w r A s B t A u B r F s = t F u r = t s = u
23 22 anbi2i F : A × B C v A × B w A × B F v = F w v = w F : A × B C r A s B t A u B r F s = t F u r = t s = u
24 1 23 bitri F : A × B 1-1 C F : A × B C r A s B t A u B r F s = t F u r = t s = u