Metamath Proof Explorer


Theorem f1oprg

Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function, analogous to f1oprswap . (Contributed by Alexander van der Vekens, 14-Aug-2017)

Ref Expression
Assertion f1oprg A V B W C X D Y A C B D A B C D : A C 1-1 onto B D

Proof

Step Hyp Ref Expression
1 f1osng A V B W A B : A 1-1 onto B
2 1 ad2antrr A V B W C X D Y A C B D A B : A 1-1 onto B
3 f1osng C X D Y C D : C 1-1 onto D
4 3 ad2antlr A V B W C X D Y A C B D C D : C 1-1 onto D
5 disjsn2 A C A C =
6 5 ad2antrl A V B W C X D Y A C B D A C =
7 disjsn2 B D B D =
8 7 ad2antll A V B W C X D Y A C B D B D =
9 f1oun A B : A 1-1 onto B C D : C 1-1 onto D A C = B D = A B C D : A C 1-1 onto B D
10 2 4 6 8 9 syl22anc A V B W C X D Y A C B D A B C D : A C 1-1 onto B D
11 df-pr A B C D = A B C D
12 11 eqcomi A B C D = A B C D
13 12 a1i A V B W C X D Y A C B D A B C D = A B C D
14 df-pr A C = A C
15 14 eqcomi A C = A C
16 15 a1i A V B W C X D Y A C B D A C = A C
17 df-pr B D = B D
18 17 eqcomi B D = B D
19 18 a1i A V B W C X D Y A C B D B D = B D
20 13 16 19 f1oeq123d A V B W C X D Y A C B D A B C D : A C 1-1 onto B D A B C D : A C 1-1 onto B D
21 10 20 mpbid A V B W C X D Y A C B D A B C D : A C 1-1 onto B D
22 21 ex A V B W C X D Y A C B D A B C D : A C 1-1 onto B D