Metamath Proof Explorer


Theorem f1oprswap

Description: A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Assertion f1oprswap A V B W A B B A : A B 1-1 onto A B

Proof

Step Hyp Ref Expression
1 f1osng A V A V A A : A 1-1 onto A
2 1 anidms A V A A : A 1-1 onto A
3 2 ad2antrr A V B W A = B A A : A 1-1 onto A
4 dfsn2 A A = A A A A
5 opeq2 A = B A A = A B
6 opeq1 A = B A A = B A
7 5 6 preq12d A = B A A A A = A B B A
8 4 7 eqtrid A = B A A = A B B A
9 dfsn2 A = A A
10 preq2 A = B A A = A B
11 9 10 eqtrid A = B A = A B
12 8 11 11 f1oeq123d A = B A A : A 1-1 onto A A B B A : A B 1-1 onto A B
13 12 adantl A V B W A = B A A : A 1-1 onto A A B B A : A B 1-1 onto A B
14 3 13 mpbid A V B W A = B A B B A : A B 1-1 onto A B
15 simpll A V B W A B A V
16 simplr A V B W A B B W
17 simpr A V B W A B A B
18 fnprg A V B W B W A V A B A B B A Fn A B
19 15 16 16 15 17 18 syl221anc A V B W A B A B B A Fn A B
20 cnvsng A V B W A B -1 = B A
21 cnvsng B W A V B A -1 = A B
22 21 ancoms A V B W B A -1 = A B
23 20 22 uneq12d A V B W A B -1 B A -1 = B A A B
24 uncom B A A B = A B B A
25 23 24 eqtrdi A V B W A B -1 B A -1 = A B B A
26 25 adantr A V B W A B A B -1 B A -1 = A B B A
27 df-pr A B B A = A B B A
28 27 cnveqi A B B A -1 = A B B A -1
29 cnvun A B B A -1 = A B -1 B A -1
30 28 29 eqtri A B B A -1 = A B -1 B A -1
31 26 30 27 3eqtr4g A V B W A B A B B A -1 = A B B A
32 31 fneq1d A V B W A B A B B A -1 Fn A B A B B A Fn A B
33 19 32 mpbird A V B W A B A B B A -1 Fn A B
34 dff1o4 A B B A : A B 1-1 onto A B A B B A Fn A B A B B A -1 Fn A B
35 19 33 34 sylanbrc A V B W A B A B B A : A B 1-1 onto A B
36 14 35 pm2.61dane A V B W A B B A : A B 1-1 onto A B