Metamath Proof Explorer


Theorem f1opw

Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion f1opw F : A 1-1 onto B b 𝒫 A F b : 𝒫 A 1-1 onto 𝒫 B

Proof

Step Hyp Ref Expression
1 id F : A 1-1 onto B F : A 1-1 onto B
2 dff1o3 F : A 1-1 onto B F : A onto B Fun F -1
3 vex a V
4 3 funimaex Fun F -1 F -1 a V
5 2 4 simplbiim F : A 1-1 onto B F -1 a V
6 f1ofun F : A 1-1 onto B Fun F
7 vex b V
8 7 funimaex Fun F F b V
9 6 8 syl F : A 1-1 onto B F b V
10 1 5 9 f1opw2 F : A 1-1 onto B b 𝒫 A F b : 𝒫 A 1-1 onto 𝒫 B