Metamath Proof Explorer


Theorem f1opw2

Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses f1opw2.1 φ F : A 1-1 onto B
f1opw2.2 φ F -1 a V
f1opw2.3 φ F b V
Assertion f1opw2 φ b 𝒫 A F b : 𝒫 A 1-1 onto 𝒫 B

Proof

Step Hyp Ref Expression
1 f1opw2.1 φ F : A 1-1 onto B
2 f1opw2.2 φ F -1 a V
3 f1opw2.3 φ F b V
4 eqid b 𝒫 A F b = b 𝒫 A F b
5 imassrn F b ran F
6 f1ofo F : A 1-1 onto B F : A onto B
7 1 6 syl φ F : A onto B
8 forn F : A onto B ran F = B
9 7 8 syl φ ran F = B
10 5 9 sseqtrid φ F b B
11 3 10 elpwd φ F b 𝒫 B
12 11 adantr φ b 𝒫 A F b 𝒫 B
13 imassrn F -1 a ran F -1
14 dfdm4 dom F = ran F -1
15 f1odm F : A 1-1 onto B dom F = A
16 1 15 syl φ dom F = A
17 14 16 eqtr3id φ ran F -1 = A
18 13 17 sseqtrid φ F -1 a A
19 2 18 elpwd φ F -1 a 𝒫 A
20 19 adantr φ a 𝒫 B F -1 a 𝒫 A
21 elpwi a 𝒫 B a B
22 21 adantl b 𝒫 A a 𝒫 B a B
23 foimacnv F : A onto B a B F F -1 a = a
24 7 22 23 syl2an φ b 𝒫 A a 𝒫 B F F -1 a = a
25 24 eqcomd φ b 𝒫 A a 𝒫 B a = F F -1 a
26 imaeq2 b = F -1 a F b = F F -1 a
27 26 eqeq2d b = F -1 a a = F b a = F F -1 a
28 25 27 syl5ibrcom φ b 𝒫 A a 𝒫 B b = F -1 a a = F b
29 f1of1 F : A 1-1 onto B F : A 1-1 B
30 1 29 syl φ F : A 1-1 B
31 elpwi b 𝒫 A b A
32 31 adantr b 𝒫 A a 𝒫 B b A
33 f1imacnv F : A 1-1 B b A F -1 F b = b
34 30 32 33 syl2an φ b 𝒫 A a 𝒫 B F -1 F b = b
35 34 eqcomd φ b 𝒫 A a 𝒫 B b = F -1 F b
36 imaeq2 a = F b F -1 a = F -1 F b
37 36 eqeq2d a = F b b = F -1 a b = F -1 F b
38 35 37 syl5ibrcom φ b 𝒫 A a 𝒫 B a = F b b = F -1 a
39 28 38 impbid φ b 𝒫 A a 𝒫 B b = F -1 a a = F b
40 4 12 20 39 f1o2d φ b 𝒫 A F b : 𝒫 A 1-1 onto 𝒫 B