Metamath Proof Explorer


Theorem f1ores

Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998)

Ref Expression
Assertion f1ores F : A 1-1 B C A F C : C 1-1 onto F C

Proof

Step Hyp Ref Expression
1 f1ssres F : A 1-1 B C A F C : C 1-1 B
2 f1f1orn F C : C 1-1 B F C : C 1-1 onto ran F C
3 1 2 syl F : A 1-1 B C A F C : C 1-1 onto ran F C
4 df-ima F C = ran F C
5 f1oeq3 F C = ran F C F C : C 1-1 onto F C F C : C 1-1 onto ran F C
6 4 5 ax-mp F C : C 1-1 onto F C F C : C 1-1 onto ran F C
7 3 6 sylibr F : A 1-1 B C A F C : C 1-1 onto F C