Metamath Proof Explorer


Theorem f1orescnv

Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion f1orescnv Fun F -1 F R : R 1-1 onto P F -1 P : P 1-1 onto R

Proof

Step Hyp Ref Expression
1 f1ocnv F R : R 1-1 onto P F R -1 : P 1-1 onto R
2 1 adantl Fun F -1 F R : R 1-1 onto P F R -1 : P 1-1 onto R
3 funcnvres Fun F -1 F R -1 = F -1 F R
4 df-ima F R = ran F R
5 dff1o5 F R : R 1-1 onto P F R : R 1-1 P ran F R = P
6 5 simprbi F R : R 1-1 onto P ran F R = P
7 4 6 eqtrid F R : R 1-1 onto P F R = P
8 7 reseq2d F R : R 1-1 onto P F -1 F R = F -1 P
9 3 8 sylan9eq Fun F -1 F R : R 1-1 onto P F R -1 = F -1 P
10 9 f1oeq1d Fun F -1 F R : R 1-1 onto P F R -1 : P 1-1 onto R F -1 P : P 1-1 onto R
11 2 10 mpbid Fun F -1 F R : R 1-1 onto P F -1 P : P 1-1 onto R