Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1osn
Metamath Proof Explorer
Description: A singleton of an ordered pair is one-to-one onto function.
(Contributed by NM , 18-May-1998) (Proof shortened by Andrew Salmon , 22-Oct-2011)
Ref
Expression
Hypotheses
f1osn.1
⊢ A ∈ V
f1osn.2
⊢ B ∈ V
Assertion
f1osn
⊢ A B : A ⟶ 1-1 onto B
Proof
Step
Hyp
Ref
Expression
1
f1osn.1
⊢ A ∈ V
2
f1osn.2
⊢ B ∈ V
3
1 2
fnsn
⊢ A B Fn A
4
2 1
fnsn
⊢ B A Fn B
5
1 2
cnvsn
⊢ A B -1 = B A
6
5
fneq1i
⊢ A B -1 Fn B ↔ B A Fn B
7
4 6
mpbir
⊢ A B -1 Fn B
8
dff1o4
⊢ A B : A ⟶ 1-1 onto B ↔ A B Fn A ∧ A B -1 Fn B
9
3 7 8
mpbir2an
⊢ A B : A ⟶ 1-1 onto B