Metamath Proof Explorer


Theorem f1osng

Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013)

Ref Expression
Assertion f1osng A V B W A B : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 sneq a = A a = A
2 1 f1oeq2d a = A a b : a 1-1 onto b a b : A 1-1 onto b
3 opeq1 a = A a b = A b
4 3 sneqd a = A a b = A b
5 4 f1oeq1d a = A a b : A 1-1 onto b A b : A 1-1 onto b
6 2 5 bitrd a = A a b : a 1-1 onto b A b : A 1-1 onto b
7 sneq b = B b = B
8 7 f1oeq3d b = B A b : A 1-1 onto b A b : A 1-1 onto B
9 opeq2 b = B A b = A B
10 9 sneqd b = B A b = A B
11 10 f1oeq1d b = B A b : A 1-1 onto B A B : A 1-1 onto B
12 8 11 bitrd b = B A b : A 1-1 onto b A B : A 1-1 onto B
13 vex a V
14 vex b V
15 13 14 f1osn a b : a 1-1 onto b
16 6 12 15 vtocl2g A V B W A B : A 1-1 onto B