Metamath Proof Explorer


Theorem f1ossf1o

Description: Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022)

Ref Expression
Hypotheses f1ossf1o.x X = w A | ψ χ
f1ossf1o.y Y = w A | ψ
f1ossf1o.f F = x X B
f1ossf1o.g G = x Y B
f1ossf1o.b φ G : Y 1-1 onto C
f1ossf1o.s φ x Y y = B τ x w χ
Assertion f1ossf1o φ F : X 1-1 onto y C | τ

Proof

Step Hyp Ref Expression
1 f1ossf1o.x X = w A | ψ χ
2 f1ossf1o.y Y = w A | ψ
3 f1ossf1o.f F = x X B
4 f1ossf1o.g G = x Y B
5 f1ossf1o.b φ G : Y 1-1 onto C
6 f1ossf1o.s φ x Y y = B τ x w χ
7 4 5 6 f1oresrab φ G x Y | x w χ : x Y | x w χ 1-1 onto y C | τ
8 simpl ψ χ ψ
9 8 a1i w A ψ χ ψ
10 9 ss2rabi w A | ψ χ w A | ψ
11 10 1 2 3sstr4i X Y
12 11 a1i φ X Y
13 12 resmptd φ x Y B X = x X B
14 4 a1i φ G = x Y B
15 2 rabeqi x Y | x w χ = x w A | ψ | x w χ
16 nfcv _ w x
17 nfcv _ w A
18 nfs1v w x w ψ
19 sbequ12 w = x ψ x w ψ
20 16 17 18 19 elrabf x w A | ψ x A x w ψ
21 20 anbi1i x w A | ψ x w χ x A x w ψ x w χ
22 anass x A x w ψ x w χ x A x w ψ x w χ
23 21 22 bitri x w A | ψ x w χ x A x w ψ x w χ
24 23 rabbia2 x w A | ψ | x w χ = x A | x w ψ x w χ
25 nfcv _ x A
26 nfv x ψ χ
27 nfs1v w x w χ
28 18 27 nfan w x w ψ x w χ
29 sbequ12 w = x χ x w χ
30 19 29 anbi12d w = x ψ χ x w ψ x w χ
31 17 25 26 28 30 cbvrabw w A | ψ χ = x A | x w ψ x w χ
32 1 31 eqtr2i x A | x w ψ x w χ = X
33 15 24 32 3eqtri x Y | x w χ = X
34 33 a1i φ x Y | x w χ = X
35 14 34 reseq12d φ G x Y | x w χ = x Y B X
36 3 a1i φ F = x X B
37 13 35 36 3eqtr4rd φ F = G x Y | x w χ
38 15 24 eqtr2i x A | x w ψ x w χ = x Y | x w χ
39 1 31 38 3eqtri X = x Y | x w χ
40 39 a1i φ X = x Y | x w χ
41 eqidd φ y C | τ = y C | τ
42 37 40 41 f1oeq123d φ F : X 1-1 onto y C | τ G x Y | x w χ : x Y | x w χ 1-1 onto y C | τ
43 7 42 mpbird φ F : X 1-1 onto y C | τ