Step |
Hyp |
Ref |
Expression |
1 |
|
f1ofn |
|
2 |
1
|
ad2antrr |
|
3 |
|
f1ofn |
|
4 |
3
|
ad2antlr |
|
5 |
|
1onn |
|
6 |
|
simplrr |
|
7 |
|
simplrl |
|
8 |
|
df-2o |
|
9 |
7 8
|
breqtrdi |
|
10 |
6 9
|
eqbrtrd |
|
11 |
|
simpr |
|
12 |
|
dif1en |
|
13 |
5 10 11 12
|
mp3an2i |
|
14 |
|
euen1b |
|
15 |
|
eumo |
|
16 |
14 15
|
sylbi |
|
17 |
13 16
|
syl |
|
18 |
|
f1omvdmvd |
|
19 |
18
|
ex |
|
20 |
19
|
ad2antrr |
|
21 |
|
eleq2 |
|
22 |
21
|
ad2antll |
|
23 |
|
difeq1 |
|
24 |
23
|
eleq2d |
|
25 |
24
|
ad2antll |
|
26 |
20 22 25
|
3imtr4d |
|
27 |
26
|
imp |
|
28 |
|
f1omvdmvd |
|
29 |
28
|
ad4ant24 |
|
30 |
|
fvex |
|
31 |
|
fvex |
|
32 |
30 31
|
pm3.2i |
|
33 |
|
eleq1 |
|
34 |
|
eleq1 |
|
35 |
33 34
|
moi |
|
36 |
32 35
|
mp3an1 |
|
37 |
17 27 29 36
|
syl12anc |
|
38 |
37
|
adantlr |
|
39 |
|
simplrr |
|
40 |
39
|
eleq2d |
|
41 |
|
fnelnfp |
|
42 |
2 41
|
sylan |
|
43 |
40 42
|
bitrd |
|
44 |
43
|
necon2bbid |
|
45 |
44
|
biimpar |
|
46 |
|
fnelnfp |
|
47 |
4 46
|
sylan |
|
48 |
47
|
necon2bbid |
|
49 |
48
|
biimpar |
|
50 |
45 49
|
eqtr4d |
|
51 |
38 50
|
pm2.61dan |
|
52 |
2 4 51
|
eqfnfvd |
|