Metamath Proof Explorer


Theorem f1ovv

Description: The range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019)

Ref Expression
Assertion f1ovv F : A 1-1 onto B A V B V

Proof

Step Hyp Ref Expression
1 f1ofo F : A 1-1 onto B F : A onto B
2 fornex A V F : A onto B B V
3 1 2 syl5com F : A 1-1 onto B A V B V
4 f1of1 F : A 1-1 onto B F : A 1-1 B
5 f1dmex F : A 1-1 B B V A V
6 5 ex F : A 1-1 B B V A V
7 4 6 syl F : A 1-1 onto B B V A V
8 3 7 impbid F : A 1-1 onto B A V B V