Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1owe
Next ⟩
weniso
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1owe
Description:
Well-ordering of isomorphic relations.
(Contributed by
NM
, 4-Mar-1997)
Ref
Expression
Hypothesis
f1owe.1
⊢
R
=
x
y
|
F
⁡
x
S
F
⁡
y
Assertion
f1owe
⊢
F
:
A
⟶
1-1 onto
B
→
S
We
B
→
R
We
A
Proof
Step
Hyp
Ref
Expression
1
f1owe.1
⊢
R
=
x
y
|
F
⁡
x
S
F
⁡
y
2
fveq2
⊢
x
=
z
→
F
⁡
x
=
F
⁡
z
3
2
breq1d
⊢
x
=
z
→
F
⁡
x
S
F
⁡
y
↔
F
⁡
z
S
F
⁡
y
4
fveq2
⊢
y
=
w
→
F
⁡
y
=
F
⁡
w
5
4
breq2d
⊢
y
=
w
→
F
⁡
z
S
F
⁡
y
↔
F
⁡
z
S
F
⁡
w
6
3
5
1
brabg
⊢
z
∈
A
∧
w
∈
A
→
z
R
w
↔
F
⁡
z
S
F
⁡
w
7
6
rgen2
⊢
∀
z
∈
A
∀
w
∈
A
z
R
w
↔
F
⁡
z
S
F
⁡
w
8
df-isom
⊢
F
Isom
R
,
S
A
B
↔
F
:
A
⟶
1-1 onto
B
∧
∀
z
∈
A
∀
w
∈
A
z
R
w
↔
F
⁡
z
S
F
⁡
w
9
isowe
⊢
F
Isom
R
,
S
A
B
→
R
We
A
↔
S
We
B
10
8
9
sylbir
⊢
F
:
A
⟶
1-1 onto
B
∧
∀
z
∈
A
∀
w
∈
A
z
R
w
↔
F
⁡
z
S
F
⁡
w
→
R
We
A
↔
S
We
B
11
7
10
mpan2
⊢
F
:
A
⟶
1-1 onto
B
→
R
We
A
↔
S
We
B
12
11
biimprd
⊢
F
:
A
⟶
1-1 onto
B
→
S
We
B
→
R
We
A