Metamath Proof Explorer


Theorem f1owe

Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997)

Ref Expression
Hypothesis f1owe.1 R = x y | F x S F y
Assertion f1owe F : A 1-1 onto B S We B R We A

Proof

Step Hyp Ref Expression
1 f1owe.1 R = x y | F x S F y
2 fveq2 x = z F x = F z
3 2 breq1d x = z F x S F y F z S F y
4 fveq2 y = w F y = F w
5 4 breq2d y = w F z S F y F z S F w
6 3 5 1 brabg z A w A z R w F z S F w
7 6 rgen2 z A w A z R w F z S F w
8 df-isom F Isom R , S A B F : A 1-1 onto B z A w A z R w F z S F w
9 isowe F Isom R , S A B R We A S We B
10 8 9 sylbir F : A 1-1 onto B z A w A z R w F z S F w R We A S We B
11 7 10 mpan2 F : A 1-1 onto B R We A S We B
12 11 biimprd F : A 1-1 onto B S We B R We A