Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1resf1
Next ⟩
f1cnvcnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1resf1
Description:
The restriction of an injective function is injective.
(Contributed by
AV
, 28-Jun-2022)
Ref
Expression
Assertion
f1resf1
⊢
F
:
A
⟶
1-1
B
∧
C
⊆
A
∧
F
↾
C
:
C
⟶
D
→
F
↾
C
:
C
⟶
1-1
D
Proof
Step
Hyp
Ref
Expression
1
f1ssres
⊢
F
:
A
⟶
1-1
B
∧
C
⊆
A
→
F
↾
C
:
C
⟶
1-1
B
2
1
3adant3
⊢
F
:
A
⟶
1-1
B
∧
C
⊆
A
∧
F
↾
C
:
C
⟶
D
→
F
↾
C
:
C
⟶
1-1
B
3
frn
⊢
F
↾
C
:
C
⟶
D
→
ran
⁡
F
↾
C
⊆
D
4
3
3ad2ant3
⊢
F
:
A
⟶
1-1
B
∧
C
⊆
A
∧
F
↾
C
:
C
⟶
D
→
ran
⁡
F
↾
C
⊆
D
5
f1ssr
⊢
F
↾
C
:
C
⟶
1-1
B
∧
ran
⁡
F
↾
C
⊆
D
→
F
↾
C
:
C
⟶
1-1
D
6
2
4
5
syl2anc
⊢
F
:
A
⟶
1-1
B
∧
C
⊆
A
∧
F
↾
C
:
C
⟶
D
→
F
↾
C
:
C
⟶
1-1
D