Metamath Proof Explorer


Theorem f1rnen

Description: Equinumerosity of the range of an injective function. (Contributed by Thierry Arnoux, 7-Jul-2023)

Ref Expression
Assertion f1rnen F : A 1-1 B A V ran F A

Proof

Step Hyp Ref Expression
1 f1fn F : A 1-1 B F Fn A
2 1 adantr F : A 1-1 B A V F Fn A
3 fnima F Fn A F A = ran F
4 2 3 syl F : A 1-1 B A V F A = ran F
5 ssid A A
6 f1imaeng F : A 1-1 B A A A V F A A
7 5 6 mp3an2 F : A 1-1 B A V F A A
8 4 7 eqbrtrrd F : A 1-1 B A V ran F A