Metamath Proof Explorer


Theorem f1sn2g

Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion f1sn2g A V F : A B F : A 1-1 B

Proof

Step Hyp Ref Expression
1 fsn2g A V F : A B F A B F = A F A
2 1 biimpa A V F : A B F A B F = A F A
3 2 simpld A V F : A B F A B
4 f1sng A V F A B A F A : A 1-1 B
5 3 4 syldan A V F : A B A F A : A 1-1 B
6 f1eq1 F = A F A F : A 1-1 B A F A : A 1-1 B
7 2 6 simpl2im A V F : A B F : A 1-1 B A F A : A 1-1 B
8 5 7 mpbird A V F : A B F : A 1-1 B