Metamath Proof Explorer


Theorem f1sng

Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021)

Ref Expression
Assertion f1sng AVBWAB:A1-1W

Proof

Step Hyp Ref Expression
1 f1osng AVBWAB:A1-1 ontoB
2 f1of1 AB:A1-1 ontoBAB:A1-1B
3 1 2 syl AVBWAB:A1-1B
4 snssi BWBW
5 4 adantl AVBWBW
6 f1ss AB:A1-1BBWAB:A1-1W
7 3 5 6 syl2anc AVBWAB:A1-1W