Metamath Proof Explorer


Theorem f1sng

Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021)

Ref Expression
Assertion f1sng A V B W A B : A 1-1 W

Proof

Step Hyp Ref Expression
1 f1osng A V B W A B : A 1-1 onto B
2 f1of1 A B : A 1-1 onto B A B : A 1-1 B
3 1 2 syl A V B W A B : A 1-1 B
4 snssi B W B W
5 4 adantl A V B W B W
6 f1ss A B : A 1-1 B B W A B : A 1-1 W
7 3 5 6 syl2anc A V B W A B : A 1-1 W