Metamath Proof Explorer


Theorem f1ss

Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013)

Ref Expression
Assertion f1ss F : A 1-1 B B C F : A 1-1 C

Proof

Step Hyp Ref Expression
1 f1f F : A 1-1 B F : A B
2 fss F : A B B C F : A C
3 1 2 sylan F : A 1-1 B B C F : A C
4 df-f1 F : A 1-1 B F : A B Fun F -1
5 4 simprbi F : A 1-1 B Fun F -1
6 5 adantr F : A 1-1 B B C Fun F -1
7 df-f1 F : A 1-1 C F : A C Fun F -1
8 3 6 7 sylanbrc F : A 1-1 B B C F : A 1-1 C