Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1ssf1
Next ⟩
f10
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1ssf1
Description:
A subset of an injective function is injective.
(Contributed by
AV
, 20-Nov-2020)
Ref
Expression
Assertion
f1ssf1
⊢
Fun
⁡
F
∧
Fun
⁡
F
-1
∧
G
⊆
F
→
Fun
⁡
G
-1
Proof
Step
Hyp
Ref
Expression
1
funssres
⊢
Fun
⁡
F
∧
G
⊆
F
→
F
↾
dom
⁡
G
=
G
2
funres11
⊢
Fun
⁡
F
-1
→
Fun
⁡
F
↾
dom
⁡
G
-1
3
cnveq
⊢
G
=
F
↾
dom
⁡
G
→
G
-1
=
F
↾
dom
⁡
G
-1
4
3
funeqd
⊢
G
=
F
↾
dom
⁡
G
→
Fun
⁡
G
-1
↔
Fun
⁡
F
↾
dom
⁡
G
-1
5
2
4
syl5ibr
⊢
G
=
F
↾
dom
⁡
G
→
Fun
⁡
F
-1
→
Fun
⁡
G
-1
6
5
eqcoms
⊢
F
↾
dom
⁡
G
=
G
→
Fun
⁡
F
-1
→
Fun
⁡
G
-1
7
1
6
syl
⊢
Fun
⁡
F
∧
G
⊆
F
→
Fun
⁡
F
-1
→
Fun
⁡
G
-1
8
7
ex
⊢
Fun
⁡
F
→
G
⊆
F
→
Fun
⁡
F
-1
→
Fun
⁡
G
-1
9
8
com23
⊢
Fun
⁡
F
→
Fun
⁡
F
-1
→
G
⊆
F
→
Fun
⁡
G
-1
10
9
3imp
⊢
Fun
⁡
F
∧
Fun
⁡
F
-1
∧
G
⊆
F
→
Fun
⁡
G
-1