Metamath Proof Explorer


Theorem f1ssr

Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Assertion f1ssr F : A 1-1 B ran F C F : A 1-1 C

Proof

Step Hyp Ref Expression
1 f1fn F : A 1-1 B F Fn A
2 1 adantr F : A 1-1 B ran F C F Fn A
3 simpr F : A 1-1 B ran F C ran F C
4 df-f F : A C F Fn A ran F C
5 2 3 4 sylanbrc F : A 1-1 B ran F C F : A C
6 df-f1 F : A 1-1 B F : A B Fun F -1
7 6 simprbi F : A 1-1 B Fun F -1
8 7 adantr F : A 1-1 B ran F C Fun F -1
9 df-f1 F : A 1-1 C F : A C Fun F -1
10 5 8 9 sylanbrc F : A 1-1 B ran F C F : A 1-1 C