Metamath Proof Explorer


Theorem f1ssres

Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Assertion f1ssres F : A 1-1 B C A F C : C 1-1 B

Proof

Step Hyp Ref Expression
1 f1f F : A 1-1 B F : A B
2 fssres F : A B C A F C : C B
3 1 2 sylan F : A 1-1 B C A F C : C B
4 df-f1 F : A 1-1 B F : A B Fun F -1
5 funres11 Fun F -1 Fun F C -1
6 4 5 simplbiim F : A 1-1 B Fun F C -1
7 6 adantr F : A 1-1 B C A Fun F C -1
8 df-f1 F C : C 1-1 B F C : C B Fun F C -1
9 3 7 8 sylanbrc F : A 1-1 B C A F C : C 1-1 B