Metamath Proof Explorer


Theorem f1stres

Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion f1stres 1 st A × B : A × B A

Proof

Step Hyp Ref Expression
1 vex y V
2 vex z V
3 1 2 op1sta dom y z = y
4 3 eleq1i dom y z A y A
5 4 biimpri y A dom y z A
6 5 adantr y A z B dom y z A
7 6 rgen2 y A z B dom y z A
8 sneq x = y z x = y z
9 8 dmeqd x = y z dom x = dom y z
10 9 unieqd x = y z dom x = dom y z
11 10 eleq1d x = y z dom x A dom y z A
12 11 ralxp x A × B dom x A y A z B dom y z A
13 7 12 mpbir x A × B dom x A
14 df-1st 1 st = x V dom x
15 14 reseq1i 1 st A × B = x V dom x A × B
16 ssv A × B V
17 resmpt A × B V x V dom x A × B = x A × B dom x
18 16 17 ax-mp x V dom x A × B = x A × B dom x
19 15 18 eqtri 1 st A × B = x A × B dom x
20 19 fmpt x A × B dom x A 1 st A × B : A × B A
21 13 20 mpbi 1 st A × B : A × B A