Metamath Proof Explorer


Theorem f1veqaeq

Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017)

Ref Expression
Assertion f1veqaeq F : A 1-1 B C A D A F C = F D C = D

Proof

Step Hyp Ref Expression
1 dff13 F : A 1-1 B F : A B c A d A F c = F d c = d
2 fveqeq2 c = C F c = F d F C = F d
3 eqeq1 c = C c = d C = d
4 2 3 imbi12d c = C F c = F d c = d F C = F d C = d
5 fveq2 d = D F d = F D
6 5 eqeq2d d = D F C = F d F C = F D
7 eqeq2 d = D C = d C = D
8 6 7 imbi12d d = D F C = F d C = d F C = F D C = D
9 4 8 rspc2v C A D A c A d A F c = F d c = d F C = F D C = D
10 9 com12 c A d A F c = F d c = d C A D A F C = F D C = D
11 1 10 simplbiim F : A 1-1 B C A D A F C = F D C = D
12 11 imp F : A 1-1 B C A D A F C = F D C = D