Metamath Proof Explorer


Theorem f1vrnfibi

Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi . (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion f1vrnfibi F V F : A 1-1 B F Fin ran F Fin

Proof

Step Hyp Ref Expression
1 f1dm F : A 1-1 B dom F = A
2 dmexg F V dom F V
3 eleq1 A = dom F A V dom F V
4 3 eqcoms dom F = A A V dom F V
5 2 4 syl5ibr dom F = A F V A V
6 1 5 syl F : A 1-1 B F V A V
7 6 impcom F V F : A 1-1 B A V
8 f1dmvrnfibi A V F : A 1-1 B F Fin ran F Fin
9 7 8 sylancom F V F : A 1-1 B F Fin ran F Fin