Metamath Proof Explorer


Theorem f2ndf

Description: The 2nd (second component of an ordered pair) function restricted to a function F is a function from F into the codomain of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)

Ref Expression
Assertion f2ndf F : A B 2 nd F : F B

Proof

Step Hyp Ref Expression
1 f2ndres 2 nd A × B : A × B B
2 fssxp F : A B F A × B
3 fssres 2 nd A × B : A × B B F A × B 2 nd A × B F : F B
4 1 2 3 sylancr F : A B 2 nd A × B F : F B
5 2 resabs1d F : A B 2 nd A × B F = 2 nd F
6 5 eqcomd F : A B 2 nd F = 2 nd A × B F
7 6 feq1d F : A B 2 nd F : F B 2 nd A × B F : F B
8 4 7 mpbird F : A B 2 nd F : F B