Metamath Proof Explorer


Theorem fac1

Description: The factorial of 1. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion fac1 1 ! = 1

Proof

Step Hyp Ref Expression
1 1nn 1
2 facnn 1 1 ! = seq 1 × I 1
3 1 2 ax-mp 1 ! = seq 1 × I 1
4 1z 1
5 seq1 1 seq 1 × I 1 = I 1
6 4 5 ax-mp seq 1 × I 1 = I 1
7 fvi 1 I 1 = 1
8 1 7 ax-mp I 1 = 1
9 3 6 8 3eqtri 1 ! = 1