Metamath Proof Explorer


Theorem fac2

Description: The factorial of 2. (Contributed by NM, 17-Mar-2005)

Ref Expression
Assertion fac2 2 ! = 2

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1 fveq2i 2 ! = 1 + 1 !
3 1nn0 1 0
4 facp1 1 0 1 + 1 ! = 1 ! 1 + 1
5 3 4 ax-mp 1 + 1 ! = 1 ! 1 + 1
6 fac1 1 ! = 1
7 1p1e2 1 + 1 = 2
8 6 7 oveq12i 1 ! 1 + 1 = 1 2
9 2cn 2
10 9 mulid2i 1 2 = 2
11 8 10 eqtri 1 ! 1 + 1 = 2
12 5 11 eqtri 1 + 1 ! = 2
13 2 12 eqtri 2 ! = 2