Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Factorial function
faccl
Next ⟩
faccld
Metamath Proof Explorer
Ascii
Unicode
Theorem
faccl
Description:
Closure of the factorial function.
(Contributed by
NM
, 2-Dec-2004)
Ref
Expression
Assertion
faccl
⊢
N
∈
ℕ
0
→
N
!
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
j
=
0
→
j
!
=
0
!
2
1
eleq1d
⊢
j
=
0
→
j
!
∈
ℕ
↔
0
!
∈
ℕ
3
fveq2
⊢
j
=
k
→
j
!
=
k
!
4
3
eleq1d
⊢
j
=
k
→
j
!
∈
ℕ
↔
k
!
∈
ℕ
5
fveq2
⊢
j
=
k
+
1
→
j
!
=
k
+
1
!
6
5
eleq1d
⊢
j
=
k
+
1
→
j
!
∈
ℕ
↔
k
+
1
!
∈
ℕ
7
fveq2
⊢
j
=
N
→
j
!
=
N
!
8
7
eleq1d
⊢
j
=
N
→
j
!
∈
ℕ
↔
N
!
∈
ℕ
9
fac0
⊢
0
!
=
1
10
1nn
⊢
1
∈
ℕ
11
9
10
eqeltri
⊢
0
!
∈
ℕ
12
facp1
⊢
k
∈
ℕ
0
→
k
+
1
!
=
k
!
⁢
k
+
1
13
12
adantl
⊢
k
!
∈
ℕ
∧
k
∈
ℕ
0
→
k
+
1
!
=
k
!
⁢
k
+
1
14
nn0p1nn
⊢
k
∈
ℕ
0
→
k
+
1
∈
ℕ
15
nnmulcl
⊢
k
!
∈
ℕ
∧
k
+
1
∈
ℕ
→
k
!
⁢
k
+
1
∈
ℕ
16
14
15
sylan2
⊢
k
!
∈
ℕ
∧
k
∈
ℕ
0
→
k
!
⁢
k
+
1
∈
ℕ
17
13
16
eqeltrd
⊢
k
!
∈
ℕ
∧
k
∈
ℕ
0
→
k
+
1
!
∈
ℕ
18
17
expcom
⊢
k
∈
ℕ
0
→
k
!
∈
ℕ
→
k
+
1
!
∈
ℕ
19
2
4
6
8
11
18
nn0ind
⊢
N
∈
ℕ
0
→
N
!
∈
ℕ