Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|
2 |
|
oveq1 |
|
3 |
2
|
oveq2d |
|
4 |
|
fveq2 |
|
5 |
4
|
oveq2d |
|
6 |
3 5
|
breq12d |
|
7 |
6
|
imbi2d |
|
8 |
|
oveq1 |
|
9 |
8
|
oveq2d |
|
10 |
|
fveq2 |
|
11 |
10
|
oveq2d |
|
12 |
9 11
|
breq12d |
|
13 |
12
|
imbi2d |
|
14 |
|
oveq1 |
|
15 |
14
|
oveq2d |
|
16 |
|
fveq2 |
|
17 |
16
|
oveq2d |
|
18 |
15 17
|
breq12d |
|
19 |
18
|
imbi2d |
|
20 |
|
oveq1 |
|
21 |
20
|
oveq2d |
|
22 |
|
fveq2 |
|
23 |
22
|
oveq2d |
|
24 |
21 23
|
breq12d |
|
25 |
24
|
imbi2d |
|
26 |
|
nnre |
|
27 |
|
nnge1 |
|
28 |
|
elnnuz |
|
29 |
28
|
biimpi |
|
30 |
26 27 29
|
leexp2ad |
|
31 |
|
0p1e1 |
|
32 |
31
|
oveq2i |
|
33 |
32
|
a1i |
|
34 |
|
fac0 |
|
35 |
34
|
oveq2i |
|
36 |
|
nnnn0 |
|
37 |
26 36
|
reexpcld |
|
38 |
37
|
recnd |
|
39 |
38
|
mulid1d |
|
40 |
35 39
|
eqtrid |
|
41 |
30 33 40
|
3brtr4d |
|
42 |
26
|
ad3antrrr |
|
43 |
|
simpllr |
|
44 |
|
peano2nn0 |
|
45 |
43 44
|
syl |
|
46 |
42 45
|
reexpcld |
|
47 |
36
|
ad3antrrr |
|
48 |
42 47
|
reexpcld |
|
49 |
43
|
faccld |
|
50 |
49
|
nnred |
|
51 |
48 50
|
remulcld |
|
52 |
|
nn0re |
|
53 |
|
peano2re |
|
54 |
43 52 53
|
3syl |
|
55 |
|
nngt0 |
|
56 |
55
|
ad3antrrr |
|
57 |
|
0re |
|
58 |
|
ltle |
|
59 |
57 58
|
mpan |
|
60 |
42 56 59
|
sylc |
|
61 |
42 45 60
|
expge0d |
|
62 |
|
simplr |
|
63 |
|
simprr |
|
64 |
46 51 42 54 61 60 62 63
|
lemul12ad |
|
65 |
64
|
anandis |
|
66 |
|
nncn |
|
67 |
|
expp1 |
|
68 |
66 44 67
|
syl2an |
|
69 |
68
|
adantr |
|
70 |
|
facp1 |
|
71 |
70
|
adantl |
|
72 |
71
|
oveq2d |
|
73 |
38
|
adantr |
|
74 |
|
faccl |
|
75 |
74
|
nncnd |
|
76 |
75
|
adantl |
|
77 |
|
nn0cn |
|
78 |
|
peano2cn |
|
79 |
77 78
|
syl |
|
80 |
79
|
adantl |
|
81 |
73 76 80
|
mulassd |
|
82 |
72 81
|
eqtr4d |
|
83 |
82
|
adantr |
|
84 |
65 69 83
|
3brtr4d |
|
85 |
84
|
exp32 |
|
86 |
85
|
com23 |
|
87 |
|
nn0ltp1le |
|
88 |
44 36 87
|
syl2anr |
|
89 |
|
peano2nn0 |
|
90 |
44 89
|
syl |
|
91 |
|
reexpcl |
|
92 |
26 90 91
|
syl2an |
|
93 |
92
|
adantr |
|
94 |
37
|
ad2antrr |
|
95 |
44
|
faccld |
|
96 |
95
|
nnred |
|
97 |
|
remulcl |
|
98 |
37 96 97
|
syl2an |
|
99 |
98
|
adantr |
|
100 |
26
|
ad2antrr |
|
101 |
27
|
ad2antrr |
|
102 |
|
simpr |
|
103 |
90
|
ad2antlr |
|
104 |
103
|
nn0zd |
|
105 |
|
nnz |
|
106 |
105
|
ad2antrr |
|
107 |
|
eluz |
|
108 |
104 106 107
|
syl2anc |
|
109 |
102 108
|
mpbird |
|
110 |
100 101 109
|
leexp2ad |
|
111 |
37 96
|
anim12i |
|
112 |
|
nn0re |
|
113 |
|
id |
|
114 |
|
nn0ge0 |
|
115 |
112 113 114
|
expge0d |
|
116 |
36 115
|
syl |
|
117 |
95
|
nnge1d |
|
118 |
116 117
|
anim12i |
|
119 |
|
lemulge11 |
|
120 |
111 118 119
|
syl2anc |
|
121 |
120
|
adantr |
|
122 |
93 94 99 110 121
|
letrd |
|
123 |
122
|
ex |
|
124 |
88 123
|
sylbid |
|
125 |
124
|
a1dd |
|
126 |
52 53
|
syl |
|
127 |
|
lelttric |
|
128 |
26 126 127
|
syl2an |
|
129 |
86 125 128
|
mpjaod |
|
130 |
129
|
expcom |
|
131 |
130
|
a2d |
|
132 |
7 13 19 25 41 131
|
nn0ind |
|
133 |
132
|
impcom |
|
134 |
|
faccl |
|
135 |
134
|
nnnn0d |
|
136 |
135
|
nn0ge0d |
|
137 |
|
nn0p1nn |
|
138 |
137
|
0expd |
|
139 |
|
0exp0e1 |
|
140 |
139
|
oveq1i |
|
141 |
134
|
nncnd |
|
142 |
141
|
mulid2d |
|
143 |
140 142
|
eqtrid |
|
144 |
136 138 143
|
3brtr4d |
|
145 |
|
oveq1 |
|
146 |
|
oveq12 |
|
147 |
146
|
anidms |
|
148 |
147
|
oveq1d |
|
149 |
145 148
|
breq12d |
|
150 |
144 149
|
syl5ibr |
|
151 |
150
|
imp |
|
152 |
133 151
|
jaoian |
|
153 |
1 152
|
sylanb |
|