Metamath Proof Explorer


Theorem faclbnd2

Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005)

Ref Expression
Assertion faclbnd2 N 0 2 N 2 N !

Proof

Step Hyp Ref Expression
1 sq2 2 2 = 4
2 2t2e4 2 2 = 4
3 1 2 eqtr4i 2 2 = 2 2
4 3 oveq2i 2 N + 1 2 2 = 2 N + 1 2 2
5 2cn 2
6 expp1 2 N 0 2 N + 1 = 2 N 2
7 5 6 mpan N 0 2 N + 1 = 2 N 2
8 7 oveq1d N 0 2 N + 1 2 2 = 2 N 2 2 2
9 4 8 syl5eq N 0 2 N + 1 2 2 = 2 N 2 2 2
10 expcl 2 N 0 2 N
11 5 10 mpan N 0 2 N
12 2cnne0 2 2 0
13 divmuldiv 2 N 2 2 2 0 2 2 0 2 N 2 2 2 = 2 N 2 2 2
14 12 12 13 mpanr12 2 N 2 2 N 2 2 2 = 2 N 2 2 2
15 11 5 14 sylancl N 0 2 N 2 2 2 = 2 N 2 2 2
16 2div2e1 2 2 = 1
17 16 oveq2i 2 N 2 2 2 = 2 N 2 1
18 11 halfcld N 0 2 N 2
19 18 mulid1d N 0 2 N 2 1 = 2 N 2
20 17 19 syl5eq N 0 2 N 2 2 2 = 2 N 2
21 9 15 20 3eqtr2rd N 0 2 N 2 = 2 N + 1 2 2
22 2nn0 2 0
23 faclbnd 2 0 N 0 2 N + 1 2 2 N !
24 22 23 mpan N 0 2 N + 1 2 2 N !
25 2re 2
26 peano2nn0 N 0 N + 1 0
27 reexpcl 2 N + 1 0 2 N + 1
28 25 26 27 sylancr N 0 2 N + 1
29 faccl N 0 N !
30 29 nnred N 0 N !
31 4re 4
32 1 31 eqeltri 2 2
33 4pos 0 < 4
34 33 1 breqtrri 0 < 2 2
35 32 34 pm3.2i 2 2 0 < 2 2
36 ledivmul 2 N + 1 N ! 2 2 0 < 2 2 2 N + 1 2 2 N ! 2 N + 1 2 2 N !
37 35 36 mp3an3 2 N + 1 N ! 2 N + 1 2 2 N ! 2 N + 1 2 2 N !
38 28 30 37 syl2anc N 0 2 N + 1 2 2 N ! 2 N + 1 2 2 N !
39 24 38 mpbird N 0 2 N + 1 2 2 N !
40 21 39 eqbrtrd N 0 2 N 2 N !