Metamath Proof Explorer


Theorem faclbnd4

Description: Variant of faclbnd5 providing a non-strict lower bound. (Contributed by NM, 23-Dec-2005)

Ref Expression
Assertion faclbnd4 N 0 K 0 M 0 N K M N 2 K 2 M M + K N !

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 faclbnd4lem4 N K 0 M 0 N K M N 2 K 2 M M + K N !
3 2 3com13 M 0 K 0 N N K M N 2 K 2 M M + K N !
4 3 3expa M 0 K 0 N N K M N 2 K 2 M M + K N !
5 faclbnd4lem3 M 0 K 0 N = 0 N K M N 2 K 2 M M + K N !
6 4 5 jaodan M 0 K 0 N N = 0 N K M N 2 K 2 M M + K N !
7 1 6 sylan2b M 0 K 0 N 0 N K M N 2 K 2 M M + K N !
8 7 3impa M 0 K 0 N 0 N K M N 2 K 2 M M + K N !
9 8 3com13 N 0 K 0 M 0 N K M N 2 K 2 M M + K N !