Metamath Proof Explorer


Theorem faclbnd4lem4

Description: Lemma for faclbnd4 . Prove the 0 < N case by induction on K . (Contributed by NM, 19-Dec-2005)

Ref Expression
Assertion faclbnd4lem4 N K 0 M 0 N K M N 2 K 2 M M + K N !

Proof

Step Hyp Ref Expression
1 oveq1 n = m n j = m j
2 oveq2 n = m M n = M m
3 1 2 oveq12d n = m n j M n = m j M m
4 fveq2 n = m n ! = m !
5 4 oveq2d n = m 2 j 2 M M + j n ! = 2 j 2 M M + j m !
6 3 5 breq12d n = m n j M n 2 j 2 M M + j n ! m j M m 2 j 2 M M + j m !
7 6 cbvralvw n n j M n 2 j 2 M M + j n ! m m j M m 2 j 2 M M + j m !
8 nnre n n
9 1re 1
10 lelttric n 1 n 1 1 < n
11 8 9 10 sylancl n n 1 1 < n
12 11 ancli n n n 1 1 < n
13 andi n n 1 1 < n n n 1 n 1 < n
14 12 13 sylib n n n 1 n 1 < n
15 nnge1 n 1 n
16 letri3 n 1 n = 1 n 1 1 n
17 8 9 16 sylancl n n = 1 n 1 1 n
18 17 biimpar n n 1 1 n n = 1
19 18 anassrs n n 1 1 n n = 1
20 15 19 mpidan n n 1 n = 1
21 oveq1 n = 1 n 1 = 1 1
22 1m1e0 1 1 = 0
23 21 22 eqtrdi n = 1 n 1 = 0
24 20 23 syl n n 1 n 1 = 0
25 faclbnd4lem3 M 0 j 0 n 1 = 0 n 1 j M n 1 2 j 2 M M + j n 1 !
26 24 25 sylan2 M 0 j 0 n n 1 n 1 j M n 1 2 j 2 M M + j n 1 !
27 26 a1d M 0 j 0 n n 1 m m j M m 2 j 2 M M + j m ! n 1 j M n 1 2 j 2 M M + j n 1 !
28 1nn 1
29 nnsub 1 n 1 < n n 1
30 28 29 mpan n 1 < n n 1
31 30 biimpa n 1 < n n 1
32 oveq1 m = n 1 m j = n 1 j
33 oveq2 m = n 1 M m = M n 1
34 32 33 oveq12d m = n 1 m j M m = n 1 j M n 1
35 fveq2 m = n 1 m ! = n 1 !
36 35 oveq2d m = n 1 2 j 2 M M + j m ! = 2 j 2 M M + j n 1 !
37 34 36 breq12d m = n 1 m j M m 2 j 2 M M + j m ! n 1 j M n 1 2 j 2 M M + j n 1 !
38 37 rspcv n 1 m m j M m 2 j 2 M M + j m ! n 1 j M n 1 2 j 2 M M + j n 1 !
39 31 38 syl n 1 < n m m j M m 2 j 2 M M + j m ! n 1 j M n 1 2 j 2 M M + j n 1 !
40 39 adantl M 0 j 0 n 1 < n m m j M m 2 j 2 M M + j m ! n 1 j M n 1 2 j 2 M M + j n 1 !
41 27 40 jaodan M 0 j 0 n n 1 n 1 < n m m j M m 2 j 2 M M + j m ! n 1 j M n 1 2 j 2 M M + j n 1 !
42 14 41 sylan2 M 0 j 0 n m m j M m 2 j 2 M M + j m ! n 1 j M n 1 2 j 2 M M + j n 1 !
43 faclbnd4lem2 M 0 j 0 n n 1 j M n 1 2 j 2 M M + j n 1 ! n j + 1 M n 2 j + 1 2 M M + j + 1 n !
44 43 3expa M 0 j 0 n n 1 j M n 1 2 j 2 M M + j n 1 ! n j + 1 M n 2 j + 1 2 M M + j + 1 n !
45 42 44 syld M 0 j 0 n m m j M m 2 j 2 M M + j m ! n j + 1 M n 2 j + 1 2 M M + j + 1 n !
46 45 ralrimdva M 0 j 0 m m j M m 2 j 2 M M + j m ! n n j + 1 M n 2 j + 1 2 M M + j + 1 n !
47 7 46 syl5bi M 0 j 0 n n j M n 2 j 2 M M + j n ! n n j + 1 M n 2 j + 1 2 M M + j + 1 n !
48 47 expcom j 0 M 0 n n j M n 2 j 2 M M + j n ! n n j + 1 M n 2 j + 1 2 M M + j + 1 n !
49 48 a2d j 0 M 0 n n j M n 2 j 2 M M + j n ! M 0 n n j + 1 M n 2 j + 1 2 M M + j + 1 n !
50 nnnn0 n n 0
51 faclbnd3 M 0 n 0 M n M M n !
52 50 51 sylan2 M 0 n M n M M n !
53 nncn n n
54 53 exp0d n n 0 = 1
55 54 oveq1d n n 0 M n = 1 M n
56 55 adantl M 0 n n 0 M n = 1 M n
57 nn0cn M 0 M
58 expcl M n 0 M n
59 57 50 58 syl2an M 0 n M n
60 59 mulid2d M 0 n 1 M n = M n
61 56 60 eqtrd M 0 n n 0 M n = M n
62 sq0 0 2 = 0
63 62 oveq2i 2 0 2 = 2 0
64 2cn 2
65 exp0 2 2 0 = 1
66 64 65 ax-mp 2 0 = 1
67 63 66 eqtri 2 0 2 = 1
68 67 a1i M 0 2 0 2 = 1
69 57 addid1d M 0 M + 0 = M
70 69 oveq2d M 0 M M + 0 = M M
71 68 70 oveq12d M 0 2 0 2 M M + 0 = 1 M M
72 expcl M M 0 M M
73 57 72 mpancom M 0 M M
74 73 mulid2d M 0 1 M M = M M
75 71 74 eqtrd M 0 2 0 2 M M + 0 = M M
76 75 oveq1d M 0 2 0 2 M M + 0 n ! = M M n !
77 76 adantr M 0 n 2 0 2 M M + 0 n ! = M M n !
78 52 61 77 3brtr4d M 0 n n 0 M n 2 0 2 M M + 0 n !
79 78 ralrimiva M 0 n n 0 M n 2 0 2 M M + 0 n !
80 oveq2 m = 0 n m = n 0
81 80 oveq1d m = 0 n m M n = n 0 M n
82 oveq1 m = 0 m 2 = 0 2
83 82 oveq2d m = 0 2 m 2 = 2 0 2
84 oveq2 m = 0 M + m = M + 0
85 84 oveq2d m = 0 M M + m = M M + 0
86 83 85 oveq12d m = 0 2 m 2 M M + m = 2 0 2 M M + 0
87 86 oveq1d m = 0 2 m 2 M M + m n ! = 2 0 2 M M + 0 n !
88 81 87 breq12d m = 0 n m M n 2 m 2 M M + m n ! n 0 M n 2 0 2 M M + 0 n !
89 88 ralbidv m = 0 n n m M n 2 m 2 M M + m n ! n n 0 M n 2 0 2 M M + 0 n !
90 89 imbi2d m = 0 M 0 n n m M n 2 m 2 M M + m n ! M 0 n n 0 M n 2 0 2 M M + 0 n !
91 oveq2 m = j n m = n j
92 91 oveq1d m = j n m M n = n j M n
93 oveq1 m = j m 2 = j 2
94 93 oveq2d m = j 2 m 2 = 2 j 2
95 oveq2 m = j M + m = M + j
96 95 oveq2d m = j M M + m = M M + j
97 94 96 oveq12d m = j 2 m 2 M M + m = 2 j 2 M M + j
98 97 oveq1d m = j 2 m 2 M M + m n ! = 2 j 2 M M + j n !
99 92 98 breq12d m = j n m M n 2 m 2 M M + m n ! n j M n 2 j 2 M M + j n !
100 99 ralbidv m = j n n m M n 2 m 2 M M + m n ! n n j M n 2 j 2 M M + j n !
101 100 imbi2d m = j M 0 n n m M n 2 m 2 M M + m n ! M 0 n n j M n 2 j 2 M M + j n !
102 oveq2 m = j + 1 n m = n j + 1
103 102 oveq1d m = j + 1 n m M n = n j + 1 M n
104 oveq1 m = j + 1 m 2 = j + 1 2
105 104 oveq2d m = j + 1 2 m 2 = 2 j + 1 2
106 oveq2 m = j + 1 M + m = M + j + 1
107 106 oveq2d m = j + 1 M M + m = M M + j + 1
108 105 107 oveq12d m = j + 1 2 m 2 M M + m = 2 j + 1 2 M M + j + 1
109 108 oveq1d m = j + 1 2 m 2 M M + m n ! = 2 j + 1 2 M M + j + 1 n !
110 103 109 breq12d m = j + 1 n m M n 2 m 2 M M + m n ! n j + 1 M n 2 j + 1 2 M M + j + 1 n !
111 110 ralbidv m = j + 1 n n m M n 2 m 2 M M + m n ! n n j + 1 M n 2 j + 1 2 M M + j + 1 n !
112 111 imbi2d m = j + 1 M 0 n n m M n 2 m 2 M M + m n ! M 0 n n j + 1 M n 2 j + 1 2 M M + j + 1 n !
113 oveq2 m = K n m = n K
114 113 oveq1d m = K n m M n = n K M n
115 oveq1 m = K m 2 = K 2
116 115 oveq2d m = K 2 m 2 = 2 K 2
117 oveq2 m = K M + m = M + K
118 117 oveq2d m = K M M + m = M M + K
119 116 118 oveq12d m = K 2 m 2 M M + m = 2 K 2 M M + K
120 119 oveq1d m = K 2 m 2 M M + m n ! = 2 K 2 M M + K n !
121 114 120 breq12d m = K n m M n 2 m 2 M M + m n ! n K M n 2 K 2 M M + K n !
122 121 ralbidv m = K n n m M n 2 m 2 M M + m n ! n n K M n 2 K 2 M M + K n !
123 122 imbi2d m = K M 0 n n m M n 2 m 2 M M + m n ! M 0 n n K M n 2 K 2 M M + K n !
124 49 79 90 101 112 123 nn0indALT K 0 M 0 n n K M n 2 K 2 M M + K n !
125 124 imp K 0 M 0 n n K M n 2 K 2 M M + K n !
126 oveq1 n = N n K = N K
127 oveq2 n = N M n = M N
128 126 127 oveq12d n = N n K M n = N K M N
129 fveq2 n = N n ! = N !
130 129 oveq2d n = N 2 K 2 M M + K n ! = 2 K 2 M M + K N !
131 128 130 breq12d n = N n K M n 2 K 2 M M + K n ! N K M N 2 K 2 M M + K N !
132 131 rspcva N n n K M n 2 K 2 M M + K n ! N K M N 2 K 2 M M + K N !
133 125 132 sylan2 N K 0 M 0 N K M N 2 K 2 M M + K N !
134 133 3impb N K 0 M 0 N K M N 2 K 2 M M + K N !