Metamath Proof Explorer


Theorem faclbnd5

Description: The factorial function grows faster than powers and exponentiations. If we consider K and M to be constants, the right-hand side of the inequality is a constant times N -factorial. (Contributed by NM, 24-Dec-2005)

Ref Expression
Assertion faclbnd5 N 0 K 0 M N K M N < 2 2 K 2 M M + K N !

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 reexpcl N K 0 N K
3 1 2 sylan N 0 K 0 N K
4 3 ancoms K 0 N 0 N K
5 nnre M M
6 reexpcl M N 0 M N
7 5 6 sylan M N 0 M N
8 remulcl N K M N N K M N
9 4 7 8 syl2an K 0 N 0 M N 0 N K M N
10 9 anandirs K 0 M N 0 N K M N
11 2nn 2
12 nn0sqcl K 0 K 2 0
13 nnexpcl 2 K 2 0 2 K 2
14 11 12 13 sylancr K 0 2 K 2
15 nnnn0 M M 0
16 nn0addcl M 0 K 0 M + K 0
17 16 ancoms K 0 M 0 M + K 0
18 15 17 sylan2 K 0 M M + K 0
19 nnexpcl M M + K 0 M M + K
20 18 19 sylan2 M K 0 M M M + K
21 20 anabss7 K 0 M M M + K
22 nnmulcl 2 K 2 M M + K 2 K 2 M M + K
23 14 21 22 syl2an2r K 0 M 2 K 2 M M + K
24 23 nnred K 0 M 2 K 2 M M + K
25 faccl N 0 N !
26 25 nnred N 0 N !
27 remulcl 2 K 2 M M + K N ! 2 K 2 M M + K N !
28 24 26 27 syl2an K 0 M N 0 2 K 2 M M + K N !
29 2re 2
30 remulcl 2 2 K 2 M M + K N ! 2 2 K 2 M M + K N !
31 29 28 30 sylancr K 0 M N 0 2 2 K 2 M M + K N !
32 faclbnd4 N 0 K 0 M 0 N K M N 2 K 2 M M + K N !
33 15 32 syl3an3 N 0 K 0 M N K M N 2 K 2 M M + K N !
34 33 3coml K 0 M N 0 N K M N 2 K 2 M M + K N !
35 34 3expa K 0 M N 0 N K M N 2 K 2 M M + K N !
36 1lt2 1 < 2
37 nnmulcl 2 K 2 M M + K N ! 2 K 2 M M + K N !
38 23 25 37 syl2an K 0 M N 0 2 K 2 M M + K N !
39 38 nngt0d K 0 M N 0 0 < 2 K 2 M M + K N !
40 ltmulgt12 2 K 2 M M + K N ! 2 0 < 2 K 2 M M + K N ! 1 < 2 2 K 2 M M + K N ! < 2 2 K 2 M M + K N !
41 29 40 mp3an2 2 K 2 M M + K N ! 0 < 2 K 2 M M + K N ! 1 < 2 2 K 2 M M + K N ! < 2 2 K 2 M M + K N !
42 28 39 41 syl2anc K 0 M N 0 1 < 2 2 K 2 M M + K N ! < 2 2 K 2 M M + K N !
43 36 42 mpbii K 0 M N 0 2 K 2 M M + K N ! < 2 2 K 2 M M + K N !
44 10 28 31 35 43 lelttrd K 0 M N 0 N K M N < 2 2 K 2 M M + K N !
45 2cn 2
46 23 nncnd K 0 M 2 K 2 M M + K
47 25 nncnd N 0 N !
48 mulass 2 2 K 2 M M + K N ! 2 2 K 2 M M + K N ! = 2 2 K 2 M M + K N !
49 45 46 47 48 mp3an3an K 0 M N 0 2 2 K 2 M M + K N ! = 2 2 K 2 M M + K N !
50 44 49 breqtrrd K 0 M N 0 N K M N < 2 2 K 2 M M + K N !
51 50 3impa K 0 M N 0 N K M N < 2 2 K 2 M M + K N !
52 51 3comr N 0 K 0 M N K M N < 2 2 K 2 M M + K N !