Metamath Proof Explorer


Theorem facndiv

Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005)

Ref Expression
Assertion facndiv M 0 N 1 < N N M ¬ M ! + 1 N

Proof

Step Hyp Ref Expression
1 nnre N N
2 recnz N 1 < N ¬ 1 N
3 1 2 sylan N 1 < N ¬ 1 N
4 3 ad2ant2lr M 0 N 1 < N N M ¬ 1 N
5 facdiv M 0 N N M M ! N
6 5 3expa M 0 N N M M ! N
7 6 nnzd M 0 N N M M ! N
8 7 adantrl M 0 N 1 < N N M M ! N
9 zsubcl M ! + 1 N M ! N M ! + 1 N M ! N
10 9 ex M ! + 1 N M ! N M ! + 1 N M ! N
11 8 10 syl5com M 0 N 1 < N N M M ! + 1 N M ! + 1 N M ! N
12 faccl M 0 M !
13 12 nncnd M 0 M !
14 peano2cn M ! M ! + 1
15 13 14 syl M 0 M ! + 1
16 15 ad2antrr M 0 N 1 < N N M M ! + 1
17 13 ad2antrr M 0 N 1 < N N M M !
18 nncn N N
19 nnne0 N N 0
20 18 19 jca N N N 0
21 20 ad2antlr M 0 N 1 < N N M N N 0
22 divsubdir M ! + 1 M ! N N 0 M ! + 1 - M ! N = M ! + 1 N M ! N
23 16 17 21 22 syl3anc M 0 N 1 < N N M M ! + 1 - M ! N = M ! + 1 N M ! N
24 ax-1cn 1
25 pncan2 M ! 1 M ! + 1 - M ! = 1
26 13 24 25 sylancl M 0 M ! + 1 - M ! = 1
27 26 oveq1d M 0 M ! + 1 - M ! N = 1 N
28 27 ad2antrr M 0 N 1 < N N M M ! + 1 - M ! N = 1 N
29 23 28 eqtr3d M 0 N 1 < N N M M ! + 1 N M ! N = 1 N
30 29 eleq1d M 0 N 1 < N N M M ! + 1 N M ! N 1 N
31 11 30 sylibd M 0 N 1 < N N M M ! + 1 N 1 N
32 4 31 mtod M 0 N 1 < N N M ¬ M ! + 1 N