Metamath Proof Explorer


Theorem facnn

Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion facnn N N ! = seq 1 × I N

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1 a1i N 0 0 0 V
3 1ex 1 V
4 3 a1i N 0 0 1 V
5 df-fac ! = 0 1 seq 1 × I
6 nnuz = 1
7 dfn2 = 0 0
8 6 7 eqtr3i 1 = 0 0
9 8 reseq2i seq 1 × I 1 = seq 1 × I 0 0
10 1z 1
11 seqfn 1 seq 1 × I Fn 1
12 fnresdm seq 1 × I Fn 1 seq 1 × I 1 = seq 1 × I
13 10 11 12 mp2b seq 1 × I 1 = seq 1 × I
14 9 13 eqtr3i seq 1 × I 0 0 = seq 1 × I
15 14 uneq2i 0 1 seq 1 × I 0 0 = 0 1 seq 1 × I
16 5 15 eqtr4i ! = 0 1 seq 1 × I 0 0
17 id N 0 0 N 0 0
18 2 4 16 17 fvsnun2 N 0 0 N ! = seq 1 × I N
19 18 7 eleq2s N N ! = seq 1 × I N