Metamath Proof Explorer


Theorem facnn2

Description: Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004)

Ref Expression
Assertion facnn2 N N ! = N 1 ! N

Proof

Step Hyp Ref Expression
1 elnnnn0 N N N 1 0
2 facp1 N 1 0 N - 1 + 1 ! = N 1 ! N - 1 + 1
3 2 adantl N N 1 0 N - 1 + 1 ! = N 1 ! N - 1 + 1
4 npcan1 N N - 1 + 1 = N
5 4 fveq2d N N - 1 + 1 ! = N !
6 5 adantr N N 1 0 N - 1 + 1 ! = N !
7 4 oveq2d N N 1 ! N - 1 + 1 = N 1 ! N
8 7 adantr N N 1 0 N 1 ! N - 1 + 1 = N 1 ! N
9 3 6 8 3eqtr3d N N 1 0 N ! = N 1 ! N
10 1 9 sylbi N N ! = N 1 ! N