Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Factorial function
facnn2
Next ⟩
faccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
facnn2
Description:
Value of the factorial function expressed recursively.
(Contributed by
NM
, 2-Dec-2004)
Ref
Expression
Assertion
facnn2
⊢
N
∈
ℕ
→
N
!
=
N
−
1
!
⋅
N
Proof
Step
Hyp
Ref
Expression
1
elnnnn0
⊢
N
∈
ℕ
↔
N
∈
ℂ
∧
N
−
1
∈
ℕ
0
2
facp1
⊢
N
−
1
∈
ℕ
0
→
N
-
1
+
1
!
=
N
−
1
!
⁢
N
-
1
+
1
3
2
adantl
⊢
N
∈
ℂ
∧
N
−
1
∈
ℕ
0
→
N
-
1
+
1
!
=
N
−
1
!
⁢
N
-
1
+
1
4
npcan1
⊢
N
∈
ℂ
→
N
-
1
+
1
=
N
5
4
fveq2d
⊢
N
∈
ℂ
→
N
-
1
+
1
!
=
N
!
6
5
adantr
⊢
N
∈
ℂ
∧
N
−
1
∈
ℕ
0
→
N
-
1
+
1
!
=
N
!
7
4
oveq2d
⊢
N
∈
ℂ
→
N
−
1
!
⁢
N
-
1
+
1
=
N
−
1
!
⋅
N
8
7
adantr
⊢
N
∈
ℂ
∧
N
−
1
∈
ℕ
0
→
N
−
1
!
⁢
N
-
1
+
1
=
N
−
1
!
⋅
N
9
3
6
8
3eqtr3d
⊢
N
∈
ℂ
∧
N
−
1
∈
ℕ
0
→
N
!
=
N
−
1
!
⋅
N
10
1
9
sylbi
⊢
N
∈
ℕ
→
N
!
=
N
−
1
!
⋅
N