Metamath Proof Explorer


Theorem facth

Description: The factor theorem. If a polynomial F has a root at A , then G = x - A is a factor of F (and the other factor is F quot G ). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis facth.1 G = X p f × A
Assertion facth F Poly S A F A = 0 F = G × f F quot G

Proof

Step Hyp Ref Expression
1 facth.1 G = X p f × A
2 eqid F f G × f F quot G = F f G × f F quot G
3 1 2 plyrem F Poly S A F f G × f F quot G = × F A
4 3 3adant3 F Poly S A F A = 0 F f G × f F quot G = × F A
5 simp3 F Poly S A F A = 0 F A = 0
6 5 sneqd F Poly S A F A = 0 F A = 0
7 6 xpeq2d F Poly S A F A = 0 × F A = × 0
8 4 7 eqtrd F Poly S A F A = 0 F f G × f F quot G = × 0
9 cnex V
10 9 a1i F Poly S A F A = 0 V
11 simp1 F Poly S A F A = 0 F Poly S
12 plyf F Poly S F :
13 11 12 syl F Poly S A F A = 0 F :
14 1 plyremlem A G Poly deg G = 1 G -1 0 = A
15 14 3ad2ant2 F Poly S A F A = 0 G Poly deg G = 1 G -1 0 = A
16 15 simp1d F Poly S A F A = 0 G Poly
17 plyssc Poly S Poly
18 17 11 sselid F Poly S A F A = 0 F Poly
19 15 simp2d F Poly S A F A = 0 deg G = 1
20 ax-1ne0 1 0
21 20 a1i F Poly S A F A = 0 1 0
22 19 21 eqnetrd F Poly S A F A = 0 deg G 0
23 fveq2 G = 0 𝑝 deg G = deg 0 𝑝
24 dgr0 deg 0 𝑝 = 0
25 23 24 eqtrdi G = 0 𝑝 deg G = 0
26 25 necon3i deg G 0 G 0 𝑝
27 22 26 syl F Poly S A F A = 0 G 0 𝑝
28 quotcl2 F Poly G Poly G 0 𝑝 F quot G Poly
29 18 16 27 28 syl3anc F Poly S A F A = 0 F quot G Poly
30 plymulcl G Poly F quot G Poly G × f F quot G Poly
31 16 29 30 syl2anc F Poly S A F A = 0 G × f F quot G Poly
32 plyf G × f F quot G Poly G × f F quot G :
33 31 32 syl F Poly S A F A = 0 G × f F quot G :
34 ofsubeq0 V F : G × f F quot G : F f G × f F quot G = × 0 F = G × f F quot G
35 10 13 33 34 syl3anc F Poly S A F A = 0 F f G × f F quot G = × 0 F = G × f F quot G
36 8 35 mpbid F Poly S A F A = 0 F = G × f F quot G