Step |
Hyp |
Ref |
Expression |
1 |
|
facth.1 |
|
2 |
|
eqid |
|
3 |
1 2
|
plyrem |
|
4 |
3
|
3adant3 |
|
5 |
|
simp3 |
|
6 |
5
|
sneqd |
|
7 |
6
|
xpeq2d |
|
8 |
4 7
|
eqtrd |
|
9 |
|
cnex |
|
10 |
9
|
a1i |
|
11 |
|
simp1 |
|
12 |
|
plyf |
|
13 |
11 12
|
syl |
|
14 |
1
|
plyremlem |
|
15 |
14
|
3ad2ant2 |
|
16 |
15
|
simp1d |
|
17 |
|
plyssc |
|
18 |
17 11
|
sselid |
|
19 |
15
|
simp2d |
|
20 |
|
ax-1ne0 |
|
21 |
20
|
a1i |
|
22 |
19 21
|
eqnetrd |
|
23 |
|
fveq2 |
|
24 |
|
dgr0 |
|
25 |
23 24
|
eqtrdi |
|
26 |
25
|
necon3i |
|
27 |
22 26
|
syl |
|
28 |
|
quotcl2 |
|
29 |
18 16 27 28
|
syl3anc |
|
30 |
|
plymulcl |
|
31 |
16 29 30
|
syl2anc |
|
32 |
|
plyf |
|
33 |
31 32
|
syl |
|
34 |
|
ofsubeq0 |
|
35 |
10 13 33 34
|
syl3anc |
|
36 |
8 35
|
mpbid |
|