Metamath Proof Explorer


Theorem facth1

Description: The factor theorem and its converse. A polynomial F has a root at A iff G = x - A is a factor of F . (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses ply1rem.p P = Poly 1 R
ply1rem.b B = Base P
ply1rem.k K = Base R
ply1rem.x X = var 1 R
ply1rem.m - ˙ = - P
ply1rem.a A = algSc P
ply1rem.g G = X - ˙ A N
ply1rem.o O = eval 1 R
ply1rem.1 φ R NzRing
ply1rem.2 φ R CRing
ply1rem.3 φ N K
ply1rem.4 φ F B
facth1.z 0 ˙ = 0 R
facth1.d ˙ = r P
Assertion facth1 φ G ˙ F O F N = 0 ˙

Proof

Step Hyp Ref Expression
1 ply1rem.p P = Poly 1 R
2 ply1rem.b B = Base P
3 ply1rem.k K = Base R
4 ply1rem.x X = var 1 R
5 ply1rem.m - ˙ = - P
6 ply1rem.a A = algSc P
7 ply1rem.g G = X - ˙ A N
8 ply1rem.o O = eval 1 R
9 ply1rem.1 φ R NzRing
10 ply1rem.2 φ R CRing
11 ply1rem.3 φ N K
12 ply1rem.4 φ F B
13 facth1.z 0 ˙ = 0 R
14 facth1.d ˙ = r P
15 nzrring R NzRing R Ring
16 9 15 syl φ R Ring
17 eqid Monic 1p R = Monic 1p R
18 eqid deg 1 R = deg 1 R
19 1 2 3 4 5 6 7 8 9 10 11 17 18 13 ply1remlem φ G Monic 1p R deg 1 R G = 1 O G -1 0 ˙ = N
20 19 simp1d φ G Monic 1p R
21 eqid Unic 1p R = Unic 1p R
22 21 17 mon1puc1p R Ring G Monic 1p R G Unic 1p R
23 16 20 22 syl2anc φ G Unic 1p R
24 eqid 0 P = 0 P
25 eqid rem 1p R = rem 1p R
26 1 14 2 21 24 25 dvdsr1p R Ring F B G Unic 1p R G ˙ F F rem 1p R G = 0 P
27 16 12 23 26 syl3anc φ G ˙ F F rem 1p R G = 0 P
28 1 2 3 4 5 6 7 8 9 10 11 12 25 ply1rem φ F rem 1p R G = A O F N
29 1 6 13 24 ply1scl0 R Ring A 0 ˙ = 0 P
30 16 29 syl φ A 0 ˙ = 0 P
31 30 eqcomd φ 0 P = A 0 ˙
32 28 31 eqeq12d φ F rem 1p R G = 0 P A O F N = A 0 ˙
33 1 6 3 2 ply1sclf1 R Ring A : K 1-1 B
34 16 33 syl φ A : K 1-1 B
35 8 1 3 2 10 11 12 fveval1fvcl φ O F N K
36 3 13 ring0cl R Ring 0 ˙ K
37 16 36 syl φ 0 ˙ K
38 f1fveq A : K 1-1 B O F N K 0 ˙ K A O F N = A 0 ˙ O F N = 0 ˙
39 34 35 37 38 syl12anc φ A O F N = A 0 ˙ O F N = 0 ˙
40 27 32 39 3bitrd φ G ˙ F O F N = 0 ˙